
Realm Management Monitor

TF-RMM Contributors

May 23, 2023

CONTENTS

1 About 1

2 Getting Started Guides 7

3 Process 17

4 Design 31

5 Glossary 47

Bibliography 49

Index 51

i

ii

CHAPTER

ONE

ABOUT

1.1 Readme for TF-RMM

TF-RMM (or simply RMM) is the Trusted Firmware Implementation of the Realm Management Monitor (RMM)
Specification. The RMM is a software component that runs at Realm EL2 and forms part of a system which imple-
ments the Arm Confidential Compute Architecture (Arm CCA). Arm CCA is an architecture which provides Protected
Execution Environments called Realms.

Prior to Arm CCA, virtual machines have to trust hypervisors that manage them and a resource that is managed by
the hypervisor is also accessible by it. Exploits against the hypervisors can leak confidential data held in the virtual
machines. Arm CCA introduces a new confidential compute environment called a Realm. Any code or data belonging
to a Realm, whether in memory or in registers, cannot be accessed or modified by the hypervisor. This means that the
Realm owner does not need to trust the hypervisor that manages the resources used by the Realm.

The Realm VM is initiated and controlled by the Normal world Hypervisor. To allow the isolated execution of the
Realm VM, a new component called the Realm Management Monitor (RMM) is introduced, executing at R_EL2.
The hypervisor interacts with the RMM via Realm Management Interface (RMI) to manage the Realm VM. Policy
decisions, such as which Realm to run or what memory to be delegated to the Realm are made by the hypervisor
and communicated via the RMI. The RMM also provides services to the Realm via the Realm Service Interface
(RSI). These services include cryptographic services and attestation. The Realm initial state can be measured and an
attestation report, which also includes platform attestation, can be requested via RSI. The RSI is also the channel for
memory management requests from the Realm VM to the RMM.

The following diagram shows the complete Arm CCA software stack running a confidential Realm VM :

Figure 1. Realm VM execution

The TF-RMM interacts with the Root EL3 Firmware via the RMM-EL3 Communication Interface and this is imple-
mented by the reference EL3 Firmware implementation TF-A.

More details about the RMM and how it fits in the Software Stack can be found in Arm CCA Software Stack Guide.

The Change-log and Release notes has the details of features implemented by this version of TF-RMM and lists any
known issues.

1

https://www.trustedfirmware.org/projects/tf-rmm/
https://www.trustedfirmware.org/
https://developer.arm.com/documentation/den0137/1-0bet0/?lang=en
https://developer.arm.com/documentation/den0137/1-0bet0/?lang=en
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.trustedfirmware.org/projects/tf-rmm/
https://trustedfirmware-a.readthedocs.io/en/latest/components/rmm-el3-comms-spec.html
https://www.trustedfirmware.org/projects/tf-a/
https://developer.arm.com/documentation/den0127/0100/Overview
https://tf-rmm.readthedocs.io/en/latest/about/change-log.html
https://www.trustedfirmware.org/projects/tf-rmm/

Realm Management Monitor

1.1.1 License

Unless specifically indicated otherwise in a file, TF-RMM files are provided under the BSD-3-Clause License. For
contributions, please see License and Copyright for Contributions.

Third Party Projects

The TF-RMM project requires to be linked with certain other 3rd party projects and they are to be cloned from their
repositories into ext folder before building. The projects are MbedTLS, t_cose, QCBOR and CppUTest.

The project also contains files which are imported from other projects into the source tree and may have a different
license. Such files with different licenses are listed in the table below. This table is used by the checkspdx tool in
the project to verify license headers.

Table 1: List of files with different license
File License
lib/libc/src/printf.c MIT
lib/libc/include/stdio.h MIT
lib/libc/src/strlcpy.c ISC
lib/libc/src/strnlen.c BSD-2-Clause
lib/allocator/src/memory_alloc.c Apache-2.0

1.1.2 Contributing

We gratefully accept bug reports and contributions from the community. Please see the Contributor’s Guide for details
on how to do this.

1.1.3 Feedback and support

Feedback is requested via email to: tf-rmm@lists.trustedfirmware.org.

To report a bug, please file an issue on Github

1.2 Project Maintenance

Realm Management Monitor (RMM) is an open governance community project. All contributions are ultimately
merged by the maintainers listed below. Technical ownership of most parts of the codebase falls on the code owners
listed below. An acknowledgement from these code owners is required before the maintainers merge a contribution.

More details may be found in the Project Maintenance Process document.

2 Chapter 1. About

https://www.trustedfirmware.org/projects/tf-rmm/
https://tf-rmm.readthedocs.io/en/latest/about/license.html
https://tf-rmm.readthedocs.io/en/latest/process/contributing.html#license-and-copyright-for-contributions
https://www.trustedfirmware.org/projects/tf-rmm/
https://github.com/ARMmbed/mbedtls.git
https://github.com/laurencelundblade/t_cose
https://github.com/laurencelundblade/QCBOR.git
https://github.com/cpputest/cpputest.git
https://tf-rmm.readthedocs.io/en/latest/process/contributing.html
mailto:tf-rmm@lists.trustedfirmware.org
https://github.com/TF-RMM/tf-rmm/issues
https://developer.trustedfirmware.org/w/collaboration/project-maintenance-process/

Realm Management Monitor

1.2.1 Maintainers

Mail Alexei Fedorov <Alexei.Fedorov@arm.com>

GitHub ID AlexeiFedorov

Mail Dan Handley <dan.handley@arm.com>

GitHub ID danh-arm

Mail Soby Mathew <soby.mathew@arm.com>

GitHub ID soby-mathew

Mail Javier Almansa Sobrino <javier.almansasobrino@arm.com>

GitHub ID javier-almansasobrino

1.3 Change-log and Release notes

1.3.1 v0.3.0

The following sections have the details on the release. This release has been verified with TF-A v2.9 release.

New features in this release

• Add support to create Realms which can make use of SVE, if present in hardware.

• Refactor the Stage 1 translation table library lib/xlat API to better fit RMM usage. Also harden dynamic mapping
via slot buffer mechanism by use of TRANSIENT software defined attribute.

• Add PMU support for Realms as described by RMM v1.0 Beta0 specification.

• Support getting DRAM info from the Boot manifest dynamically at runtime.

– RMM can now support the 2nd DDR bank on FVP.

Build/Testing improvements

• Define a unit test framework using CppUTest for RMM.

• Add unittests for granule, slot-buffer and Stage 1 translation table lib xlat.

• Improve the fake-host mock capability by adding support for per PE sysreg emulation.

• Improve the VA to PA mock layer for fake-host.

• Enable generation of gprof profiling data as part of fake-host runs.

• Improve the sample application on host-build platform by adding the cold attestation initialization flow.
Also a sample minimal Realm create, run and destroy sequence is added to showcase the RMI calls involved.

• Further improvements to the the unit test framework :

– Restore the sysreg state between test runs so each test gets a known sysreg state.

– Add capability to test assertions.

– Support dynamic behaviour for test harness depending on requirement.

– Add support for coverage report generation as part of unit test run.

1.3. Change-log and Release notes 3

mailto:Alexei.Fedorov@arm.com
https://github.com/AlexeiFedorov
mailto:dan.handley@arm.com
https://github.com/danh-arm
mailto:soby.mathew@arm.com
https://github.com/soby-mathew
mailto:javier.almansasobrino@arm.com
https://github.com/javieralso-arm/
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tag/?h=v2.9.0

Realm Management Monitor

• Build improvements in RMM:

– Move mbedTLS build from configure stage to build stage.

– Simplify QCBOR build.

– Fix build artefact directory path to better cater to multi-config builds.

Bug fixes in this release

• Remove HVC exit handling from RMI_REC_ENTER handler.

• Fix parameter in measurement_extend_sha512().

• Fix issues in lib/xlat for some corner cases.

• Mask MTE capability from id_aa64pfr1_el1 so that Realms can see that MTE is not supported.

• Add isb() after writes to cptr_el2 system register.

• Fix the granule alignment check on granule_addr.

• Fix some cppcheck warnings.

• Properly handle errors for granule (un)delegate calls.

• Fix the incorrect bit map manipulation for tracking VMID for realms.

• Fix some incorrect Block mapping cases in Stage 2 translation.

Upcoming features

• RMM EAC Specification alignment.

• Support Self-Hosted Debug Realms.

• Support FEAT_PAuth for Realms and utilize the same for RMM.

• Support LPA2 for Stage 2 Realm translation tables.

• Threat model covering RMM data flows.

• Enable Bounded Model Checker (CBMC) for source analysis.

• Save and restore SME/SME2 context belonging to NS Host. This allows NS Host to make use of SME/SME2
when Realms are scheduled.

Known issues and limitations

• The size of RsiHostCall structure is 256 bytes in the implementation and aligns to RMM Beta1 specification
rather than the 4 KB size specified in RMM Beta0 specification.

• The RMM Beta0 specification does not require to have a CBOR bytestream wrapper around the cca-platform-
token and cca-realm-delegated-token, but the RMM implementation does so and this is aligned with later ver-
sions of the RMM specification (Beta2 onwards).

• The RMM config RMM_FPU_USE_AT_REL2 does not work as intended and this config is disabled by default.
This will be fixed in a future release.

4 Chapter 1. About

https://developer.arm.com/documentation/den0137/1-0bet1/?lang=en
https://developer.arm.com/documentation/den0137/1-0bet0/?lang=en
https://developer.arm.com/documentation/den0137/1-0bet0/?lang=en

Realm Management Monitor

• When the RSI_ATTEST_TOKEN_CONTINUE call is interrupted and then resumed later by Host via
RMI_REC_ENTER, the original SMC is replayed again with the original arguments rather than returning
RSI_INCOMPLETE error code to Realm. The result is that the interrupted RSI call is continued again till
completion and then returns back to Realm with the appropriate error code.

1.3.2 v0.2.0

• This release has been verified with TF-A v2.8 release.

• The release has the following fixes and enhancements:

– Add support to render documentation on read-the-docs.

– Fix the known issue with RSI_IPA_STATE_GET returning RSI_ERROR_INPUT for a destroyed IPA
instead of emulating data abort to NS Host.

– Fix an issue with RSI_HOST_CALL not returning back to Host to emulate a stage2 data abort.

– Harden an assertion check for do_host_call().

• The other known issues and limitations remain the same as listed for v0.1.0.

1.3.3 v0.1.0

• First TF-RMM source release aligned to RMM Beta0 specification. The specified interfaces : Realm Manage-
ment Interface (RMI) and Realm Service Interface (RSI) are implemented which can attest and run Realm VMs
as described by the Arm CCA Architecture.

Upcoming features

• Support SVE, Self-Hosted Debug and PMU in Realms

• Support LPA2 for Stage 2 Realm translation tables.

• Threat model covering RMM data flows.

• Enable Bounded Model Checker (CBMC) for source analysis.

• Unit test framework based on RMM Fake host architecture.

Known issues and limitations

The following is a list of issues which are expected to be fixed in the future releases of TF-RMM :

• The size of RsiHostCall structure is 256 bytes in the implementation and aligns to RMM Beta1 specification
rather than the 4 KB size specified in RMM Beta0 specification.

• The RSI_IPA_STATE_GET command returns error RSI_ERROR_INPUT for a destroyed IPA instead of emu-
lating data abort to Host.

• The RMM Beta0 specification does not require to have a CBOR bytestream wrapper around the cca-platform-
token and cca-realm-delegated-token, but the RMM implementation does so.

1.3. Change-log and Release notes 5

https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tag/?h=v2.8.0
https://developer.arm.com/documentation/den0137/1-0bet0/?lang=en
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://developer.arm.com/documentation/den0137/1-0bet1/?lang=en
https://developer.arm.com/documentation/den0137/1-0bet0/?lang=en
https://developer.arm.com/documentation/den0137/1-0bet0/?lang=en

Realm Management Monitor

1.4 Developer Certificate of Origin

Developer Certificate of Origin Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors. 1 Letterman Drive Suite D4700 San Francisco,
CA, 94129

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I have the right to submit it under the open source
license indicated in the file; or

(b) The contribution is based upon previous work that, to the best of my knowledge, is covered under an appropriate
open source license and I have the right under that license to submit that work with modifications, whether
created in whole or in part by me, under the same open source license (unless I am permitted to submit under a
different license), as indicated in the file; or

(c) The contribution was provided directly to me by some other person who certified (a), (b) or (c) and I have not
modified it.

(d) I understand and agree that this project and the contribution are public and that a record of the contribution
(including all personal information I submit with it, including my sign-off) is maintained indefinitely and may
be redistributed consistent with this project or the open source license(s) involved.

1.5 License

BSD 3-Clause License

Copyright TF-RMM Contributors All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

6 Chapter 1. About

CHAPTER

TWO

GETTING STARTED GUIDES

2.1 Prerequisite

This document describes the software requirements for building RMM for AArch64 target platforms.

It may possible to build RMM with combinations of software packages that are different from those listed below,
however only the software described in this document can be officially supported.

2.2 Build Host

The RMM officially supports a limited set of build environments and setups. In this context, official support means
that the environments listed below are actively used by team members and active developers, hence users should be
able to recreate the same configurations by following the instructions described below. In case of problems, the RMM
team provides support only for these environments, but building in other environments can still be possible.

We recommend at least Ubuntu 20.04 LTS (x64) for build environment. The arm64/AArch64 Ubuntu and other Linux
distributions should also work fine, provided that the necessary tools and libraries can be installed.

2.3 Tool & Dependency overview

The following tools are required to obtain and build RMM:

Table 1: Tool dependencies
Name Version Component
C compiler see Setup Toolchain Firmware
CMake >=3.15.0 Firmware, Documentation
GNU Make >4.0 Firmware, Documentation
Python 3.x Firmware, Documentation
Perl >=5.26 Firmware, Documentation
ninja-build Firmware (using Ninja Generator)
Sphinx >=2.4,<3.0.0 Documentation
sphinxcontrib-plantuml Documentation
sphinx-rtd-theme Documentation
Git Firmware, Documentation
Graphviz dot >v2.38.0 Documentation
docutils >v2.38.0 Documentation
gcovr >=v4.2 Tools(Coverage analysis)

7

Realm Management Monitor

2.4 Setup Toolchain

To compile RMM code for an AArch64 target, at least one of the supported AArch64 toolchains have to be available
in the build environment.

Currently, the following compilers are supported:

• GCC (aarch64-none-elf-) >= 10.2-2020.11 (from the Arm Developer website)

• Clang+LLVM >= 14.0.0 (from the LLVM Releases website)

The respective compiler binary must be found in the shell’s search path. Be sure to add the bin/ directory if you have
downloaded a binary version. The toolchain to use can be set using RMM_TOOLCHAIN parameter and can be set to
either llvm or gnu. The default toolchain is gnu.

For non-native AArch64 target build, the CROSS_COMPILE environment variable must contain the right target triplet
corresponding to the AArch64 GCC compiler. Below is an example when RMM is to be built for AArch64 target on
a non-native host machine and using GCC as the toolchain.

export CROSS_COMPILE=aarch64-none-elf-
export PATH=<path-to-aarch64-gcc>/bin:$PATH

Please note that AArch64 GCC must be included in the shell’s search path even when using Clang as the compiler as
LLVM does not include some C standard headers like stdlib.h and needs to be picked up from the include folder of the
AArch64 GCC. Below is an example when RMM is to be built for AArch64 target on a non-native host machine and
using LLVM as the toolchain.

export CROSS_COMPILE=aarch64-none-elf-
export PATH=<path-to-aarch64-gcc>/bin:<path-to-clang+llvm>/bin:$PATH

The CROSS_COMPILE variable is ignored for fake_host build and the native host toolchain is used for the build.

2.5 Package Installation (Ubuntu-20.04 x64)

If you are using the recommended Ubuntu distribution then we can install the required packages with the following
commands:

1. Install dependencies:

sudo apt-get install -y git build-essential python3 python3-pip make ninja-build
sudo snap install cmake

2. Verify cmake version:

cmake --version

Note: Please download cmake 3.19 or later version from https://cmake.org/download/.

3. Add CMake path into environment:

export PATH=<CMake path>/bin:$PATH

8 Chapter 2. Getting Started Guides

https://developer.arm.com/open-source/gnu-toolchain/gnu-a/downloads
https://releases.llvm.org/
https://cmake.org/download/

Realm Management Monitor

2.6 Install python dependencies

Note: The installation of Python dependencies is an optional step. This is required only if building documentation.

RMM’s docs/requirements.txt file declares additional Python dependencies. Install them with pip3:

pip3 install --upgrade pip
cd <rmm source folder>
pip3 install -r docs/requirements.txt

2.7 Install coverage tools analysis dependencies

Note: This is an optional step only needed if you intend to run coverage analysis on the source code.

On Ubuntu, gcovr tool can be installed in two different ways:

Using the pagckage manager:

sudo apt-get install gcovr

The second (and recommended) way is install it with pip3:

pip3 install --upgrade pip
pip3 install gcovr

2.8 Getting the RMM Source

Source code for RMM is maintained in a Git repository hosted on TrustedFirmware.org. To clone this repository from
the server, run the following in your shell:

git clone --recursive https://git.trustedfirmware.org/TF-RMM/tf-rmm.git

2.8.1 Additional steps for Contributors

If you are planning on contributing back to RMM, your commits need to include a Change-Id footer as explained in
Mandated Trailers. This footer is generated by a Git hook that needs to be installed inside your cloned RMM source
folder.

The TF-RMM Gerrit page under trustedfirmware.org contains a Clone with commit-msg hook subsection under its
Download header where you can copy the command to clone the repo with the required git hooks. Please use the SSH
option to clone the repository on your local machine.

If needed, you can also manually install the hooks separately on an existing repo:

curl -Lo $(git rev-parse --git-dir)/hooks/commit-msg https://review.trustedfirmware.
→˓org/tools/hooks/commit-msg
chmod +x $(git rev-parse --git-dir)/hooks/commit-msg

You can read more about Git hooks in the githooks page of the Git hooks documentation.

2.6. Install python dependencies 9

https://review.trustedfirmware.org/admin/repos/TF-RMM/tf-rmm
https://git-scm.com/docs/githooks

Realm Management Monitor

2.9 Install Cppcheck and dependencies

Note: The installation of Cppcheck is an optional step. This is required only if using the Cppcheck static analysis.

Follow the public documentation to install Cppcheck either from the official website https://cppcheck.sourceforge.io/
#download or from the official github https://github.com/danmar/cppcheck/

If you own a valid copy of a MISRA rules file:

sudo mkdir /usr/local/share/Cppcheck/misra
sudo cp -a <path to the misra rules file>/<file name> /usr/local/share/Cppcheck/misra/
→˓misra.rules

2.10 Performing an Initial Build

The RMM sources can be compiled using multiple CMake options.

For detailed instructions on build configurations and examples see RMM Build Examples.

A typical build command for the FVP platform using GCC toolchain is shown below:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR}

2.11 Running the RMM

The RMM is part of the CCA software stack and relies on EL3 Firmware to load the binary at boot time appropriately.
It needs both EL3 Firmware and Non-Secure Host to be present at runtime for its functionality. The EL3 Firmware
must comply to RMM-EL3 Communication Specification and is typically the TF-A. The Non-Secure Host can be an
RME aware hypervisor or an appropriate Test utility running in Non-Secure world which can interact with RMM via
Realm Management Interface (RMI).

The TF-A project includes build and run instructions for an RME enabled system on the FVP platform as part of TF-A
RME documentation. The rmm.img binary is provided to the TF-A bootloader to be packaged in FIP using RMM
build option in TF-A.

If RMM is built for the fake_host architecture (see RMM Fake Host Build), then the generated rmm.elf binary can run
natively on the Host machine. It does this by emulating parts of the system as described in RMM Fake host architecture
design.

10 Chapter 2. Getting Started Guides

https://cppcheck.sourceforge.io/#download
https://cppcheck.sourceforge.io/#download
https://github.com/danmar/cppcheck/
https://trustedfirmware-a.readthedocs.io/en/latest/components/rmm-el3-comms-spec.html
https://www.trustedfirmware.org/projects/tf-a/
https://www.trustedfirmware.org/projects/tf-a/
https://trustedfirmware-a.readthedocs.io/en/latest/components/realm-management-extension.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/realm-management-extension.html
https://www.trustedfirmware.org/projects/tf-a/

Realm Management Monitor

2.12 RMM Build Examples

The RMM supports a wide range of build configuration options. Some of these options are more regularly exercised
by developers, while others are for advanced and experimental usage only.

RMM can be built using either GNU(GCC) or LLVM(Clang) toolchain. See this section for toolchain setup and the
supported versions.

The build is performed in 2 stages:

Configure Stage: In this stage, a default config file can be specified which configures a sane config for the chosen
platform. If this default config needs to be modified, it is recommended to first perform a default config and then
modify using the cmake ncurses as shown in CMake UI Example.

Build Stage: In this stage, the source build is performed by specifying the –build option. See any of the commands
below for an example.

Note: It is recommended to clean build if any of the build options are changed from previous build.

Below are some of the typical build and configuration examples frequently used in RMM development for the FVP
Platform. Detailed configuration options are described here.

RMM also supports a fake_host build which can be used to build RMM for test and code analysis on the host
machine. See this section here for more details.

1. Perform an initial default build with minimum configuration options:

Build using gnu toolchain

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR}

Build using LLVM toolchain

cmake -DRMM_CONFIG=fvp_defcfg -DRMM_TOOLCHAIN=llvm -S ${RMM_SOURCE_DIR} -B ${RMM_
→˓BUILD_DIR}
cmake --build ${RMM_BUILD_DIR}

2. Perform an initial default config, then modify using ccmake ncurses UI:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
ccmake -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR}

3. Perform a debug build and specify a log level:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR} -DCMAKE_BUILD_
→˓TYPE=Debug -DLOG_LEVEL=50
cmake --build ${RMM_BUILD_DIR}

4. Perform a documentation build:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR} -DRMM_DOCS=ON
cmake --build ${RMM_BUILD_DIR} -- docs

5. Perform a clean verbose build:

2.12. RMM Build Examples 11

Realm Management Monitor

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} --clean-first --verbose

6. Perform a build with Ninja Genenerator:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR} -DCMAKE_BUILD_
→˓TYPE=${BUILD_TYPE} -G "Ninja" -DLOG_LEVEL=50
cmake --build ${RMM_BUILD_DIR}

7. Perform a build with Ninja Multi Config Genenerator:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR} -G "Ninja
→˓Multi-Config" -DLOG_LEVEL=50
cmake --build ${RMM_BUILD_DIR} --config ${BUILD_TYPE}

8. Perform a Cppcheck static analysis:

cmake -DRMM_CONFIG=fvp_defcfg -DRMM_STATIC_ANALYSIS_CPPCHECK=ON -S ${RMM_SOURCE_DIR} -
→˓B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- cppcheck
cat ${BUILD_DIR}/tools/cppcheck/cppcheck.xml

9. Perform a Cppcheck static analysis with CERT_C/MISRA/THREAD SAFETY (example with MISRA):

cmake -DRMM_CONFIG=fvp_defcfg -DRMM_STATIC_ANALYSIS_CPPCHECK=ON -DRMM_STATIC_ANALYSIS_
→˓CPPCHECK_CHECKER_MISRA=ON -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- cppcheck
cat ${BUILD_DIR}/tools/cppcheck/cppcheck.xml

10. Perform a checkpatch analysis:

Run checkpatch on commits in the current branch against BASE_COMMIT (default origin/master):

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- checkpatch

Run checkpatch on entire codebase:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- checkcodebase

11. Perform a checkspdx analysis:

Run checkspdx on commits in the current branch against BASE_COMMIT (default origin/master):

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- checkspdx-patch

Run checkspdx on entire codebase:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- checkspdx-codebase

13. Check header file include order:

Run checkincludes-patch on commits in the current branch against BASE_COMMIT (default origin/master):

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- checkincludes-patch

12 Chapter 2. Getting Started Guides

Realm Management Monitor

Run checkincludes on entire codebase:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- checkincludes-codebase

14. Perform unit tests on development host:

Build and run unit tests on host platform. It is recommended to do the Debug build of RMM.

cmake -DRMM_CONFIG=host_defcfg -DHOST_VARIANT=host_test -DCMAKE_BUILD_TYPE=Debug -S $
→˓{RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- run-unittests

Run coverage analysis on unit tests.

cmake -DRMM_CONFIG=host_defcfg -DHOST_VARIANT=host_test -DRMM_COVERAGE=ON -DCMAKE_
→˓BUILD_TYPE=Debug -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- run-coverage

The above commands will automatically generate the HTML coverage report in folder build/Debug/coverage within
build directory. The HTML generation can be disabled by setting RMM_HTML_COV_REPORT=OFF.

2.13 RMM Build Options

The RMM build system supports the following CMake build options.

2.13. RMM Build Options 13

Realm Management Monitor

Table 2: RMM CMake Options Table
Option Valid val-

ues
Default Description

RMM_CONFIG Platform build configuration, eg:
fvp_defcfg for the FVP

RMM_ARCH aarch64 |
fake_host

aarch64 Target Architecture for RMM build

RMM_MAX_SIZE 0x0 Maximum size for RMM image
MAX_CPUS 16 Maximum number of CPUs supported by

RMM
GRANULE_SIZE 4096 Granule Size used by RMM
RMM_DOCS ON | OFF OFF RMM Documentation build
CMAKE_BUILD_TYPE Debug |

Release
Release CMake Build type

CMAKE_CONFIGURATION_TYPES Debug &
Release

Debug & Re-
lease

Multi-generator configuration types

CMAKE_DEFAULT_BUILD_TYPE Debug |
Release

Release Default multi-generator configuration
type

MbedTLS_BUILD_TYPE Debug |
Release

Release MbedTLS build type

RMM_PLATFORM fvp | host Platform to build
RMM_TOOLCHAIN gnu | llvm Toolchain name
LOG_LEVEL 40 Log level to apply for RMM (0 - 50)
RMM_STATIC_ANALYSIS Enable static analysis checkers
RMM_STATIC_ANALYSIS_CPPCHECKON | OFF ON Enable Cppcheck static analysis
RMM_STATIC_ANALYSIS_CPPCHECK_CHECKER_CERT_CON | OFF ON Enable Cppcheck’s SEI CERT C checker
RMM_STATIC_ANALYSIS_CPPCHECK_CHECKER_MISRAON | OFF ON Enable Cppcheck’s MISRA C:2012

checker
RMM_STATIC_ANALYSIS_CPPCHECK_CHECKER_THREAD_SAFETYON | OFF ON Enable Cppcheck’s thread safety checker
RMM_UART_ADDR 0x0 Base addr of UART to be used for RMM

logs
PLAT_CMN_CTX_MAX_XLAT_TABLES 0 Maximum number of translation tables

used by the runtime context
PLAT_CMN_EXTRA_MMAP_REGIONS 0 Extra platform mmap regions that need to

be mapped in S1 xlat tables
RMM_NUM_PAGES_PER_STACK 3 Number of pages to use per CPU stack
MBEDTLS_ECP_MAX_OPS 248 - 1000 Number of max operations per ECC sign-

ing iteration
RMM_FPU_USE_AT_REL2 ON | OFF OFF(fake_host)

ON(aarch64)
Enable FPU/SIMD usage in RMM.

RMM_MAX_GRANULES 0 Maximum number of memory granules
available to the system

HOST_VARIANT host_build
| host_test

host_build Variant to build for the host
platform. Only available when
RMM_PLATFORM=host

RMM_COVERAGE ON | OFF OFF Enable coverage analysis
RMM_HTML_COV_REPORT ON | OFF ON Enable HTML output report for coverage

analysis

14 Chapter 2. Getting Started Guides

Realm Management Monitor

2.14 RMM LLVM Build

RMM can be built using LLVM Toolchain (Clang). To build using LLVM toolchain, set RMM_TOOLCHAIN=llvm
during configuration stage.

2.15 RMM Fake Host Build

RMM also provides a fake_host target architecture which allows the code to be built natively on the host using
the host toolchain. To build for fake_host architecture, set RMM_CONFIG=host_defcfg during the configuration
stage.

2.14. RMM LLVM Build 15

Realm Management Monitor

16 Chapter 2. Getting Started Guides

CHAPTER

THREE

PROCESS

3.1 Coding Standard

This document describes the coding rules to follow to contribute to the project.

3.1.1 General

The following coding standard is derived from MISRA C:2012 Guidelines, TF-A coding style and Linux kernel coding
style coding standards.

3.1.2 File Encoding

The source code must use the UTF-8 character encoding. Comments and documentation may use non-ASCII charac-
ters when required (e.g. Greek letters used for units) but code itself is still limited to ASCII characters.

3.1.3 Language

The primary language for comments and naming must be International English. In cases where there is a conflict
between the American English and British English spellings of a word, the American English spelling is used.

Exceptions are made when referring directly to something that does not use international style, such as the name of a
company. In these cases the existing name should be used as-is.

3.1.4 C Language Standard

The C language mode used for RMM is GNU11. This is the “GNU dialect of ISO C11”, which implies the ISO C11
standard with GNU extensions.

Both GCC and Clang compilers have support for GNU11 mode, though Clang does lack support for a small number
of GNU extensions. These missing extensions are rarely used, however, and should not pose a problem.

17

https://www.misra.org.uk/Activities/MISRAC/tabid/160/Default.aspx
https://trustedfirmware-a.readthedocs.io/en/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html

Realm Management Monitor

3.1.5 Length

• Each file, function and scopes should have a logical uniting theme.

No length limit is set for a file.

• A function should be 24 lines maximum.

This will not be enforced, any function being longer should trigger a discussion during the review process.

• A line must be <= 80 characters, except for string literals as it would make any search for it more difficult.

• A variable should not be longer than 31 characters.

Although the C11 specification specifies that the number of signitificant characters in an identifier is implemen-
tation defined it sets the translation limit to the 31 initial characters.

TYPE LIMIT
function 24 lines (not enforced)
line 80 characters
identifier 31 characters

3.1.6 Headers/Footers

• Include guards:

#ifndef FILE_NAME_H
#define FILE_NAME_H

<header content>

#endif /* FILE_NAME_H */

• Include statement variant is <>:

#include <file.h>

• Include files should be alphabetically ordered:

#include <axxxx.h>
#include <bxxxx.h>
[...]
#include <zxxxx.h>

• If possible, use forward declaration of struct types in public headers. This will reduce interdependence of header
file inclusion.

#include <axxxx.h>
#include <bxxxx.h>
[...]
/* forward declaration */
struct x;
void foo(struct *x);

18 Chapter 3. Process

https://en.wikipedia.org/wiki/C11_(C_standard_revision)

Realm Management Monitor

3.1.7 Naming conventions

• Case: Functions and variables must be in Snake Case

unsigned int my_snake_case_variable = 0U;

void my_snake_case_function(void)
{

[...]
}

• Local variables should be declared at the top of the closest opening scope and should be short.

We won’t enforce a length, and defining short is difficult, this motto (from Linux) catches the spirit

LOCAL variable names should be short, and to the point.
If you have some random integer loop counter, it should probably be called i.
Calling it loop_counter is non-productive, if there is no chance of it being mis-understood.
Similarly, tmp can be just about any type of variable that is used to hold a temporary value.
If you are afraid to mix up your local variable names, you have another problem.

int foo(const int a)
{

int c; /* needed in the function */
c = a; /* MISRA-C rules recommend to not modify arguments variables */

if (c == 42) {
int b; /* needed only in this "if" statment */

b = bar(); /* bar will return an int */
if (b != -1) {

c += b;
}

}
return c;

}

• Use an appropraite prefix for public API of a component. For example, if the component name is bar, then the
init API of the component should be called bar_init().

3.1.8 Indentation

Use tabs for indentation. The use of spaces for indentation is forbidden except in the case where a term is being
indented to a boundary that cannot be achieved using tabs alone.

Tab spacing should be set to 8 characters.

Trailing whitespaces or tabulations are not allowed and must be trimmed.

3.1. Coding Standard 19

Realm Management Monitor

3.1.9 Spacing

Single spacing should be used around most operators, including:

• Arithmetic operators (+, -, /, *, %)

• Assignment operators (=, +=, etc)

• Boolean operators (&&, ||)

• Comparison operators (<, >, ==, etc)

• Shift operators (>>, <<)

• Logical operators (&, |, etc)

• Flow control (if, else, switch, while, return, etc)

No spacing should be used around the following operators

• Cast (())

• Indirection (*)

3.1.10 Braces

• Use K&R style for statements.

• Function opening braces are on a new line.

• Use braces even for singled line.

void function(void)
{

/* if statement */
if (my_test) {

do_this();
do_that();

}

/* if/else statement */
if (my_Test) {

do_this();
do_that();

} else {
do_other_this();

}
}

3.1.11 Commenting

Double-slash style of comments (//) is not allowed, below are examples of correct commenting.

/*
* This example illustrates the first allowed style for multi-line comments.

*
* Blank lines within multi-lines are allowed when they add clarity or when

* they separate multiple contexts.

*/

20 Chapter 3. Process

Realm Management Monitor

/**
* This is the second allowed style for multi-line comments.

*
* In this style, the first and last lines use asterisks that run the full

* width of the comment at its widest point.

*
* This style can be used for additional emphasis.

***/

/* Single line comments can use this format */

/***
* This alternative single-line comment style can also be used for emphasis.

**/

3.1.12 Error return values and Exception handling

• Function return type must be explicitly defined.

• Unless specifed otherwise by an official specification, return values must be used to return success or failure
(Standard Posix error codes).

Return an integer if the function is an action or imperative command Failure: -Exxx (STD posix error
codes, unless specified otherwise)

Success: 0

Return a boolean if the function is as predicate Failure: false

Success: true

• If a function returns error information, then that error information shall be tested.

Exceptions are allowed for STDLIB functions (memcpy/printf/. . .) in which case it must be void casted.

#define MY_TRANSFORMED_ERROR (-1)

void my_print_function(struct my_struct in_mystruct)
{

long long transformed_a = my_transform_a(in_mystruct.a);

if (transform_a != MY_TRANSFORMED_ERROR) {
(void)printf("STRUCT\n\tfield(a): %ll\n", transformed_a);

} else {
(void)printf("STRUCT\n\tERROR %ll\n", transformed_a);

}
}

3.1. Coding Standard 21

Realm Management Monitor

3.1.13 Use of asserts and panic

Assertions, as a general rule, are only used to catch errors during development cycles and are removed from production
binaries. They are useful to document pre-conditions for a function or impossible conditions in code. They are not
substitutes for proper error checking and any expression used to test an assertion must not have a side-effect.

For example,

assert(--i == 0);

should not be used in code.

Assertions can be used to validate input arguments to an API as long as the caller and callee are within the same trust
boundary.

panic() is used in places wherein it is not possible to continue the execution of program sensibly. It should be
used sparingly within code and, if possible, instead of panic(), components should return error back to the caller and
the caller can decide on the appropriate action. This is particularly useful to build resilence to the program wherein
non-functional part of the program can be disabled and, if possible, other functional aspects of the program can be
kept running.

3.1.14 Using COMPILER_ASSERT to check for compile time data errors

Where possible, use the COMPILER_ASSERT macro to check the validity of data known at compile time instead of
checking validity at runtime, to avoid unnecessary runtime code.

For example, this can be used to check that the assembler’s and compiler’s views of the size of an array is the same.

#include <utils_def.h>

define MY_STRUCT_SIZE 8 /* Used by assembler source files */

struct my_struct {
uint32_t arg1;
uint32_t arg2;

};

COMPILER_ASSERT(MY_STRUCT_SIZE == sizeof(struct my_struct));

If MY_STRUCT_SIZE in the above example were wrong then the compiler would emit an error like this:

my_struct.h:10:1: note: in expansion of macro 'COMPILER_ASSERT'
10 | COMPILER_ASSERT(MY_STRUCT_SIZE == sizeof(struct my_struct));

| ^~~~~~~~~~~~~~~

3.1.15 Data types, structures and typedefs

• Data Types:

The RMM codebase should be kept as portable as possible for 64-bits platforms. To help with this, the following data
type usage guidelines should be followed:

• Where possible, use the built-in C data types for variable storage (for example, char, int, long long, etc)
instead of the standard C11 types. Most code is typically only concerned with the minimum size of the data
stored, which the built-in C types guarantee.

22 Chapter 3. Process

Realm Management Monitor

• Avoid using the exact-size standard C11 types in general (for example, uint16_t, uint32_t, uint64_t,
etc) since they can prevent the compiler from making optimizations. There are legitimate uses for them, for
example to represent data of a known structure. When using them in a structure definition, consider how padding
in the structure will work across architectures.

• Use int as the default integer type - it’s likely to be the fastest on all systems. Also this can be assumed to be
32-bit as a consequence of the Procedure Call Standard for the Arm 64-bit Architecture .

• Avoid use of short as this may end up being slower than int in some systems. If a variable must be exactly
16-bit, use int16_t or uint16_t.

• long are defined as LP64 (64-bit), this is guaranteed to be 64-bit.

• Use char for storing text. Use uint8_t for storing other 8-bit data.

• Use unsigned for integers that can never be negative (counts, indices, sizes, etc). RMM intends to comply with
MISRA “essential type” coding rules (10.X), where signed and unsigned types are considered different essential
types. Choosing the correct type will aid this. MISRA static analysers will pick up any implicit signed/unsigned
conversions that may lead to unexpected behaviour.

• For pointer types:

– If an argument in a function declaration is pointing to a known type then simply use a pointer to that type
(for example: struct my_struct *).

– If a variable (including an argument in a function declaration) is pointing to a general, memory-mapped
address, an array of pointers or another structure that is likely to require pointer arithmetic then use
uintptr_t. This will reduce the amount of casting required in the code. Avoid using unsigned
long or unsigned long long for this purpose; it may work but is less portable.

– For other pointer arguments in a function declaration, use void *. This includes pointers to types that
are abstracted away from the known API and pointers to arbitrary data. This allows the calling function to
pass a pointer argument to the function without any explicit casting (the cast to void * is implicit). The
function implementation can then do the appropriate casting to a specific type.

– Avoid pointer arithmetic generally (as this violates MISRA C 2012 rule 18.4) and especially on void
pointers (as this is only supported via language extensions and is considered non-standard). In RMM,
setting the W build flag to W=3 enables the -Wpointer-arith compiler flag and this will emit warnings where
pointer arithmetic is used.

– Use ptrdiff_t to compare the difference between 2 pointers.

• Use size_t when storing the sizeof() something.

• Use ssize_t when returning the sizeof() something from a function that can also return an error code; the
signed type allows for a negative return code in case of error. This practice should be used sparingly.

• Use u_register_twhen it’s important to store the contents of a register in its native size (64-bit in AArch64).
This is not a standard C11 type but is widely available in libc implementations. Where possible, cast the variable
to a more appropriate type before interpreting the data. For example, the following structure uses this type to
minimize the storage required for the set of registers:

typedef struct aapcs64_params {
u_register_t arg0;
u_register_t arg1;
u_register_t arg2;
u_register_t arg3;
u_register_t arg4;
u_register_t arg5;
u_register_t arg6;

(continues on next page)

3.1. Coding Standard 23

https://developer.arm.com/docs/ihi0055/latest/

Realm Management Monitor

(continued from previous page)

u_register_t arg7;
} aapcs64_params_t;

If some code wants to operate on arg0 and knows that it represents a 32-bit unsigned integer on all systems, cast it to
unsigned int.

These guidelines should be updated if additional types are needed.

• Typedefs:

Typedef should be avoided and used only to create opaque types. An opaque data type is one whose concrete data
structure is not publicly defined. Opaque data types can be used on handles to resources that the caller is not expected
to address directly.

/* File main.c */
#include <my_lib.h>

int main(void)
{

context_t *context;
int res;

context = my_lib_init();

res = my_lib_compute(context, "2x2");
if (res == -EMYLIB_ERROR) {

return -1
}

return res;
}

/* File my_lib.h */
#ifndef MY_LIB_H
#define MY_LIB_H

typedef struct my_lib_context {
[...] /* whatever internal private variables you need in my_lib */

} context_t;

#endif /* MY_LIB_H */

3.1.16 Macros and Enums

• Favor functions over macros.

• Preprocessor macros and enums values are written in all uppercase text.

• A numerical value shall be typed.

/* Common C usage */
#define MY_MACRO 4UL

/* If used in C and ASM (included from a .S file) */
#define MY_MACRO UL(4)

• Expressions resulting from the expansion of macro parameters must be enclosed in parentheses.

24 Chapter 3. Process

Realm Management Monitor

• A macro parameter immediately following a # operator mustn’t be immediately followed by a ## operator.

#define SINGLE_HASH_OP(x) (#x) /* allowed */
#define SINGLE_DOUBLE_HASH_OP(x, y) (x ## y) /* allowed */
#define MIXED_HASH_OP(x, y) (#x ## y) /* not allowed */

• Avoid defining macros that affect the control flow (i.e. avoid using return/goto in a macro).

• Macro with multiple statements can be enclosed in a do-while block or in a expression statement.

int foo(char **b);

#define M1(a, b) \
do { \

if ((a) == 5) { \
foo((b)); \

} \
} while (false)

#define M2(a, b) \
({ \
if ((a) == 5) { \

foo((b)); \
} \
})

int foo(char **b)
{

return 42;
}

int main(int ac, char **av)
{

if (ac == 1) {
M1(ac, av);

} else if (ac == 2) {
M2(ac, av);

} else {
return -1;

}

return ac;
}

3.1.17 Switch statements

• Return in a case are allowed.

• Fallthrough are allowed as long as they are commented.

• Do not rely on type promotion between the switch type and the case type.

3.1. Coding Standard 25

Realm Management Monitor

3.1.18 Inline assembly

• Favor C language over assembly language.

• Document all usage of assembly.

• Do not mix C and ASM in the same file.

3.1.19 Libc functions that are banned or to be used with caution

Below is a list of functions that present security risks.

libc function Comments
strcpy, wcscpy, strncpy use strlcpy instead
strcat, wcscat, strncat use strlcat instead
sprintf, vsprintf use snprintf, vsnprintf instead
snprintf if used, ensure result fits in buffer i.e : snprintf(buf,size. . .) < size
vsnprintf if used, inspect va_list match types specified in format string
strtok, strtok_r, strsep Should not be used
ato* Should not be used
*toa Should not be used

The use of above functions are discouraged and will only be allowed in justified cases after a discussion has been held
either on the mailing list or during patch review and it is agreed that no alternative to their use is available. The code
containing the banned APIs must properly justify their usage in the comments.

The above restriction does not apply to Third Party IP code inside the ext/ directory.

3.2 Security Handling

Currently the RMM implementation conforms to the RMM Beta0 Specification which means it is not yet ready to be
productised.

The generic security incident process can be found at TrustedFirmware.org security incident process.

3.3 Commit Style

When writing commit messages, please think carefully about the purpose and scope of the change you are making:
describe briefly what the change does, and describe in detail why it does it. This helps to ensure that changes to the
code-base are transparent and approachable to reviewers, and it allows us to keep a more accurate changelog. You
may use Markdown in commit messages.

A good commit message provides all the background information needed for reviewers to understand the intent and
rationale of the patch. This information is also useful for future reference. For example:

• What does the patch do?

• What motivated it?

• What impact does it have?

• How was it tested?

26 Chapter 3. Process

https://developer.trustedfirmware.org/w/collaboration/security_center/

Realm Management Monitor

• Have alternatives been considered? Why did you choose this approach over another one?

• If it fixes an issue, include a reference.

– Github prescribes a format for issue fixes that can be used within the commit message:

Fixes TF-RMM/tf-rmm#<issue-number>

Commit messages are expected to be of the following form, based on conventional commits:

<type>[optional scope]: <description>

[optional body]

[optional trailer(s)]

The following types are permissible :

Type Description
feat A new feature
fix A bug fix
build Changes that affect the build system or external dependencies
docs Documentation-only changes
perf A code change that improves performance
refactor A code change that neither fixes a bug nor adds a feature
revert Changes that revert a previous change
style Changes that do not affect the meaning of the code (white-space, formatting, missing semi-colons,

etc.)
test Adding missing tests or correcting existing tests
chore Any other change

The permissible scopes are more flexible, and we recommend that they match the directory where the patch applies
(or where the main subject of the patch is, in case of changes accross several directories).

The following example commit message demonstrates the use of the refactor type and the lib/arch scope:

refactor(lib/arch): ...

This change introduces

Change-Id: ...
Signed-off-by: ...

3.3.1 Mandated Trailers

Commits are expected to be signed off with the Signed-off-by: trailer using your real name and email address.
You can do this automatically by committing with Git’s -s flag.

There may be multiple Signed-off-by: lines depending on the history of the patch. See License and Copyright
for Contributions for guidance on this.

Ensure that each commit also has a unique Change-Id: line. If you have cloned the repository using the “Clone
with commit-msg hook” clone method, then this should be done automatically for you.

More details may be found in the Gerrit Change-Ids documentation.

3.3. Commit Style 27

https://github.com/TF-RMM/tf-rmm/issues
https://review.trustedfirmware.org/Documentation/user-changeid.html

Realm Management Monitor

3.4 Contributor’s Guide

3.4.1 Getting Started

• Make sure you have a Github account and you are logged on review.trustedfirmware.org.

• Clone RMM on your own machine as described in Getting the RMM Source.

• If you plan to contribute a major piece of work, it is usually a good idea to start a discussion around it on the
mailing list. This gives everyone visibility of what is coming up, you might learn that somebody else is already
working on something similar or the community might be able to provide some early input to help shaping the
design of the feature.

• If you intend to include Third Party IP in your contribution, please mention it explicitly in the email thread and
ensure that the changes that include Third Party IP are made in a separate patch (or patch series).

• Create a local topic branch based on the RMM main branch.

3.4.2 Making Changes

• See the License and Copyright for Contributions section for guidance on license and copyright.

• Ensure commits adhere to the project’s Commit Style.

• Make commits of logical units. See these general Git guidelines for contributing to a project.

• Keep the commits on topic. If you need to fix another bug or make another enhancement, please address it on a
separate topic branch.

• Split the patch into manageable units. Small patches are usually easier to review so this will speed up the review
process.

• Avoid long commit series. If you do have a long series, consider whether some commits should be squashed
together or addressed in a separate topic.

• Follow the Coding Standard.

– Use the static checks as shown in RMM Build Examples to perform checks like checkpatch, checkspdx,
header files include order etc.

• Where appropriate, please update the documentation.

– Consider whether the Design document or other in-source documentation needs updating.

• Ensure that each patch in the patch series compiles in all supported configurations. For generic changes, such
as on the libraries, The RMM Fake host architecture should be able to, at least, build. Patches which do not
compile will not be merged.

• Please test your changes and add suitable tests in the available test frameworks for any new functionality.

• Ensure that all CI automated tests pass. Failures should be fixed. They might block a patch, depending on how
critical they are.

28 Chapter 3. Process

https://review.trustedfirmware.org
https://git.trustedfirmware.org/TF-RMM/tf-rmm.git
https://git.trustedfirmware.org/TF-RMM/tf-rmm.git
http://git-scm.com/book/ch5-2.html

Realm Management Monitor

3.4.3 Submitting Changes

• Assuming the clone of the repo has been done as mentioned in the Getting the RMM Source and origin refers
to the upstream repo, submit your changes for review targeting the integration branch. Create a topic that
describes the target of your changes to help group related patches together.

git push origin HEAD:refs/for/integration [-o topic=<your_topic>]

Refer to the Gerrit Uploading Changes documentation for more details.

• Add reviewers for your patch:

– At least one maintainer. See the list of Maintainers.

– Alternatively, you might send an email to the TF-RMM mailing list to broadcast your review request to
the community.

• The changes will then undergo further review by the designated people. Any review comments will be made
directly on your patch. This may require you to do some rework. For controversial changes, the discussion
might be moved to the TF-RMM mailing list to involve more of the community.

• The patch submission rules are the following. For a patch to be approved and merged in the tree, it must get a
Code-Review+2.

In addition to that, the patch must also get a Verified+1. This is usually set by the Continuous Integration
(CI) bot when all automated tests passed on the patch. Sometimes, some of these automated tests may fail for
reasons unrelated to the patch. In this case, the maintainers might (after analysis of the failures) override the CI
bot score to certify that the patch has been correctly tested.

In the event where the CI system lacks proper tests for a patch, the patch author or a reviewer might agree to
perform additional manual tests in their review and the reviewer incorporates the review of the additional testing
in the Code-Review+1 to attest that the patch works as expected.

• When the changes are accepted, the Maintainers will integrate them.

– Typically, the Maintainers will merge the changes into the integration branch.

– If the changes are not based on a sufficiently-recent commit, or if they cannot be automatically rebased,
then the Maintainers may rebase it on the integration branch or ask you to do so.

– After final integration testing, the changes will make their way into the main branch. If a problem is found
during integration, the Maintainers will request your help to solve the issue. They may revert your patches
and ask you to resubmit a reworked version of them or they may ask you to provide a fix-up patch.

3.4.4 License and Copyright for Contributions

All new files should include the BSD-3-Clause SPDX license identifier where possible. When contributing code to
us, the committer and all authors are required to make the submission under the terms of the Developer Certificate
of Origin, confirming that the code submitted can (legally) become part of the project, and be subject to the same
BSD-3-Clause license. This is done by including the standard Git Signed-off-by: line in every commit message.
If more than one person contributed to the commit, they should also add their own Signed-off-by: line.

Files that entirely consist of contributions to this project should have a copyright notice and BSD-3-Clause SPDX
license identifier of the form :

SPDX-License-Identifier: BSD-3-Clause
SPDX-FileCopyrightText: Copyright TF-RMM Contributors.

3.4. Contributor’s Guide 29

https://review.trustedfirmware.org/Documentation/user-upload.html
https://lists.trustedfirmware.org/mailman3/lists/tf-rmm.lists.trustedfirmware.org/
https://lists.trustedfirmware.org/mailman3/lists/tf-rmm.lists.trustedfirmware.org/

Realm Management Monitor

Patches that contain changes to imported Third Party IP files should retain their original copyright and license notices.
If changes are made to the imported files, then add an additional SPDX-FileCopyrightText tag line as shown
above.

30 Chapter 3. Process

CHAPTER

FOUR

DESIGN

4.1 RMM Locking Guidelines

This document outlines the locking requirements, discusses the implementation and provides guidelines for a deadlock
free RMM implementation. Further, the document hitherto is based upon RMM Alpha-05 specification and is expected
to change as the implementation proceeds.

4.1.1 Introduction

In order to meet the requirement for the RMM to be small, simple to reason about, and to co-exist with contemporary
hypervisors which are already designed to manage system memory, the RMM does not include a memory allocator. It
instead relies on an untrusted caller providing granules of memory used to hold both meta data to manage realms as
well as code and data for realms.

To maintain confidentiality and integrity of these granules, the RMM implements memory access controls by main-
taining awareness of the state of each granule (aka Granule State, ref Implementation) and enforcing rules on how
memory granules can transition from one state to another and how a granule can be used depending on its state. For
example, all granules that can be accessed by software outside the PAR of a realm are in a specific state, and a granule
that holds meta data for a realm is in another specific state that prevents it from being used as data in a realm and
accidentally corrupted by a realm, which could lead to internal failure in the RMM.

Due to this complex nature of the operations supported by the RMM, for example when managing page tables for
realms, the RMM must be able to hold locks on multiple objects at the same time. It is a well known fact that holding
multiple locks at the same time can easily lead to deadlocking the system, as for example illustrated by the dining
philosophers problem [EWD310]. In traditional operating systems software such issues are avoided by defining a
partial order on all system objects and always acquiring a lower-ordered object before a higher-ordered object. This
solution was shown to be correct by Dijkstra [EWD625]. Solutions are typically obtained by assigning an arbitrary
order based upon certain attributes of the objects, for example by using the memory address of the object.

Unfortunately, software such as the RMM cannot use these methods directly because the RMM receives an opaque
pointer from the untrusted caller and it cannot know before locking the object if it is indeed of the expected state.
Furthermore, MMU page tables are hierarchical data structures and operations on the page tables typically must be
able to locate a leaf node in the hierarchy based on single value (a virtual address) and therefore must walk the page
tables in their hierarchical order. This implies an order of objects in the same Granule State which is not known by
a process executing in the RMM before holding at least one lock on object in the page table hierarchy. An obvious
solution to these problems would be to use a single global lock for the RMM, but that would serialize all operations
across all shared data structures in the system and severely impact performance.

31

Realm Management Monitor

4.1.2 Requirements

To address the synchronization needs of the RMM described above, we must employ locking and lock-free mechanisms
which satisfies a number of properties. These are discussed below:

Critical Section

A critical section can be defined as a section of code within a process that requires access to shared resources and that
must not be executed while another process is in a corresponding section of code [WS2001].

Further, access to shared resources without appropriate synchronization can lead to race conditions, which can be
defined as a situation in which multiple threads or processes read and write a shared item and the final result depends
on the relative timing of their execution [WS2001].

In terms of RMM, an access to a shared resource can be considered as a list of operations/instructions in program order
that either reads from or writes to a shared memory location (e.g. the granule data structure or the memory granule
described by the granule data structure, ref Implementation). It is also understood that this list of operations does not
execute indefinitely, but eventually terminates.

We can now define our desired properties as follows:

Mutual Exclusion

Mutual exclusion can be defined as the requirement that when one process is in a critical section that accesses shared
resources, no other process may be in a critical section that accesses any of those shared resources [WS2001].

The following example illustrates how an implementation might enforce mutual exclusion of critical sections using a
lock on a valid granule data structure struct granule *a:

struct granule *a;
bool r;

r = try_lock(a);
if (!r) {

return -ERROR;
}
critical_section(a);
unlock(a);
other_work();

We note that a process might fail to perform the lock operation on object a and return an error or successfully acquire
the lock, execute the critical_section(), unlock() and then continue to make forward progress to other_work() function.

Deadlock Avoidance

A deadlock can be defined as a situation in which two or more processes are unable to proceed because each is waiting
for one of the others to do something [WS2001].

In other words, one or more processes are trying to enter their critical sections but none of them make forward progress.

We can then define the deadlock avoidance property as the inverse scenario:

When one or more processes are trying to enter their critical sections, at least one of them makes forward progress.

A deadlock is a fatal event if it occurs in supervisory software such as the RMM. This must be avoided as it can render
the system vulnerable to exploits and/or unresponsive which may lead to data loss, interrupted service and eventually
economic loss.

32 Chapter 4. Design

Realm Management Monitor

Starvation Avoidance

Starvation can be defined as a situation in which a runnable process is overlooked indefinitely by the scheduler;
although it is able to proceed, it is never chosen [WS2001].

Then starvation avoidance can be defined as, all processes that are trying to enter their critical sections eventually make
forward progress.

Starvation must be avoided, because if one or more processes do not make forward progress, the PE on which the
process runs will not perform useful work and will be lost to the user, resulting in similar issues like a deadlocked
system.

Nested Critical Sections

A critical section for an object may be nested within the critical section for another object for the same process. In
other words, a process may enter more than one critical section at the same time.

For example, if the RMM needs to copy data from one granule to another granule, and must be sure that both granules
can only be modified by the process itself, it may be implemented in the following way:

struct granule *a;
struct granule *b;
bool r;

r = try_lock(a);
if (!r) {

return -ERROR;
}

/* critical section for granule a -- ENTER */

r = try_lock(b);
if (r) {

/* critical section for granule b -- ENTER */
b->foo = a->foo;
/* critical section for granule b -- EXIT */
unlock(b);

}

/* critical section for granule a -- EXIT */
unlock(a);

4.1.3 Implementation

The RMM maintains granule states by defining a data structure for each memory granule in the system. Conceptually,
the data structure contains the following fields:

• Granule State

• Lock

• Reference Count

The Lock field provides mutual exclusion of processes executing in their critical sections which may access the shared
granule data structure and the shared meta data which may be stored in the memory granule which is in one of the
RD, REC, and Table states. Both the data structure describing the memory granule and the contents of the memory
granule itself can be accessed by multiple PEs concurrently and we therefore require some concurrency protocol to

4.1. RMM Locking Guidelines 33

Realm Management Monitor

avoid corruption of shared data structures. An alternative to using a lock providing mutual exclusion would be to
design all operations that access shared data structures as lock-free algorithms, but due to the complexity of the data
structures and the operation of the RMM we consider this too difficult to accomplish in practice.

The Reference Count field is used to keep track of references between granules. For example, an RD describes a
realm, and a REC describes an execution context within that realm, and therefore an RD must always exist when a
REC exists. To prevent the RMM from destroying an RD while a REC still exists, the RMM holds a reference count on
the RD for each REC associated with the same realm, and only when the all the RECs in a realm have been destroyed
and the reference count on an RD drops to zero, can the RD be destroyed and the granule be repurposed for other use.

Based on the above, we now describe the Granule State field and the current locking/refcount implementation:

• UnDelegated: These are granules for which RMM does not prevent the PAS of the granule from being changed
by another agent to any value. In this state, the granule content access is not protected by granule::lock, as it is
always subject to reads and writes from Non-Realm worlds.

• Delegated: These are granules with memory only accessible by the RMM. The granule content is protected by
granule::lock. No reference counts are held on this granule state.

• Realm Descriptor (RD): These are granules containing meta data describing a realm, and only accessible by
the RMM. Granule content access is protected by granule::lock. A reference count is also held on this granule
for each associated REC granule.

• Realm Execution Context (REC): These are granules containing meta data describing a virtual PE running in
a realm, and are only accessible by the RMM. The execution content access is not protected by granule::lock,
because we cannot enter a realm while holding the lock. Further, the following rules apply with respect to the
granule’s reference counts:

– A reference count is held on this granule when a REC is running.

– As REC cannot be run on two PEs at the same time, the maximum value of the reference count is one.

– When the REC is entered, the reference count is incremented (set to 1) atomically while granule::lock is
held.

– When the REC exits, the reference counter is released (set to 0) atomically with store-release semantics
without granule::lock being held.

– The RMM can access the granule’s content on the entry and exit path from the REC while the reference is
held.

• Translation Table: These are granules containing meta data describing virtual to physical address translation
for the realm, accessible by the RMM and the hardware Memory Management Unit (MMU). Granule content
access is protected by granule::lock, but hardware translation table walks may read the RTT at any point in time.
Multiple granules in this state can only be locked at the same time if they are part of the same tree, and only in
topological order from root to leaf. The topological order of concatenated root level RTTs is from the lowest
address to the highest address. The complete internal locking order for RTT granules is: RD -> [RTT] -> . . . ->
RTT. A reference count is held on this granule for each entry in the RTT that refers to a granule:

– Table s2tte.

– Valid s2tte.

– Valid_NS s2tte.

– Assigned s2tte.

• Data: These are granules containing realm data, accessible by the RMM and by the realm to which it belongs.
Granule content access is not protected by granule::lock, as it is always subject to reads and writes from within
a realm. A granule in this state is always referenced from exactly one entry in an RTT granule which must be
locked before locking this granule. Only a single DATA granule can be locked at a time on a given PE. The

34 Chapter 4. Design

Realm Management Monitor

complete internal locking order for DATA granules is: RD -> RTT -> RTT -> . . . -> DATA. No reference counts
are held on this granule type.

Locking

The RMM uses spinlocks along with the object state for locking implementation. The lock provides similar exclusive
acquire semantics known from trivial spinlock implementations, however also allows verification of whether the locked
object is of an expected state.

The data structure for the spinlock can be described in C as follows:

typedef struct {
unsigned int val;

} spinlock_t;

This data structure can be embedded in any object that requires synchronization of access, such as the struct granule
described above.

The following operations are defined on spinlocks:

Listing 1: Typical spinlock operations

/*
* Locks a spinlock with acquire memory ordering semantics or goes into

* a tight loop (spins) and repeatedly checks the lock variable

* atomically until it becomes available.

*/
void spinlock_acquire(spinlock_t *l);

/*
* Unlocks a spinlock with release memory ordering semantics. Must only

* be called if the calling PE already holds the lock.

*/
void spinlock_release(spinlock_t *l);

The above functions should not be directly used for locking/unlocking granules, instead the following should be used:

Listing 2: Granule locking operations

/*
* Acquires a lock (or spins until the lock is available), then checks

* if the granule is in the `expected_state`. If the `expected_state`

* is matched, then returns `true`. Otherwise, releases the lock and

* returns `false`.

*/
bool granule_lock_on_state_match(struct granule *g,

enum granule_state expected_state);

/*
* Used when we're certain of the state of an object (e.g. because we

* hold a reference to it) or when locking objects whose reference is

* obtained from another object, after that objects is locked.

*/
void granule_lock(struct granule *g,

enum granule_state expected_state);

/*
(continues on next page)

4.1. RMM Locking Guidelines 35

Realm Management Monitor

(continued from previous page)

* Obtains a pointer to a locked granule at `addr` if `addr` is a valid

* granule physical address and the state of the granule at `addr` is

* `expected_state`.

*/
struct granule *find_lock_granule(unsigned long addr,

enum granule_state expected_state);

/* Find two granules and lock them in order of their address. */
return_code_t find_lock_two_granules(unsigned long addr1,

enum granule_state expected_state1,
struct granule **g1,
unsigned long addr2,
enum granule_state expected_state2,
struct granule **g2);

/*
* Obtain a pointer to a locked granule at `addr` which is unused

* (refcount = 0), if `addr` is a valid granule physical address and the

* state of the granule at `addr` is `expected_state`.

*/
struct granule *find_lock_unused_granule(unsigned long addr,

enum granule_state
expected_state);

Listing 3: Granule unlocking operations

/*
* Release a spinlock held on a granule. Must only be called if the

* calling PE already holds the lock.

*/
void granule_unlock(struct granule *g);

/*
* Sets the state and releases a spinlock held on a granule. Must only

* be called if the calling PE already holds the lock.

*/
void granule_unlock_transition(struct granule *g,

enum granule_state new_state);

Reference Counting

The reference count is implemented using the refcount variable within the granule structure to keep track of the
references in between granules. For example, the refcount is used to prevent changes to the attributes of a parent
granule which is referenced by child granules, ie. a parent with refcount not equal to zero.

Race conditions on the refcount variable are avoided by either locking the granule before accessing the vari-
able or by lock-free mechanisms such as Single-Copy Atomic operations along with ARM weakly ordered AC-
QUIRE/RELEASE/RELAXED memory semantics to synchronize shared resources.

The following operations are defined on refcount:

Listing 4: Read a refcount value

/*
* Single-copy atomic read of refcount variable with RELAXED memory

(continues on next page)

36 Chapter 4. Design

Realm Management Monitor

(continued from previous page)

* ordering semantics. Use this function if lock-free access to the

* refcount is required with relaxed memory ordering constraints applied

* at that point.

*/
unsigned long granule_refcount_read_relaxed(struct granule *g);

/*
* Single-copy atomic read of refcount variable with ACQUIRE memory

* ordering semantics. Use this function if lock-free access to the

* refcount is required with acquire memory ordering constraints applied

* at that point.

*/
unsigned long granule_refcount_read_acquire(struct granule *g);

Listing 5: Increment a refcount value

/*
* Increments the granule refcount. Must be called with the granule

* lock held.

*/
void __granule_get(struct granule *g);

/*
* Increments the granule refcount by `val`. Must be called with the

* granule lock held.

*/
void __granule_refcount_inc(struct granule *g, unsigned long val);

/* Atomically increments the reference counter of the granule.*/
void atomic_granule_get(struct granule *g);

Listing 6: Decrement a refcount value

/*
* Decrements the granule refcount. Must be called with the granule

* lock held.

*/
void __granule_put(struct granule *g);

/*
* Decrements the granule refcount by `val`. Asserts if refcount can

* become negative. Must be called with the granule lock held.

*/
void __granule_refcount_dec(struct granule *g, unsigned long val);

/* Atomically decrements the reference counter of the granule. */
void atomic_granule_put(struct granule *g);

/*
* Atomically decrements the reference counter of the granule. Stores to

* memory with RELEASE semantics.

*/
void atomic_granule_put_release(struct granule *g);

4.1. RMM Locking Guidelines 37

Realm Management Monitor

Listing 7: Directly access refcount value

/*
* Directly reads/writes the refcount variable. Must be called with the

* granule lock held.

*/
granule->refcount;

4.1.4 Guidelines

In order to meet the Requirements discussed above, this section stipulates some locking and lock-free algorithm im-
plementation guidelines for developers.

Mutual Exclusion

The spinlock, acquire/release and atomic operations provide trivial mutual exclusion implementations for RMM. How-
ever, the following general guidelines should be taken into consideration:

• Appropriate deadlock avoidance techniques should be incorporated when using multiple locks.

• Lock-free access to shared resources should be atomic.

• Memory ordering constraints should be used prudently to avoid performance degradation. For e.g. on an
unlocked granule (e.g. REC), prior to the refcount update, if there are associated memory operations, then the
update should be done with release semantics. However, if there are no associated memory accesses to the
granule prior to the refcount update then release semantics will not be required.

Deadlock Avoidance

Deadlock avoidance is provided by defining a partial order on all objects in the system where the locking operation
will eventually fail if the caller tries to acquire a lock of a different state object than expected. This means that no two
processes will be expected to acquire locks in a different order than the defined partial order, and we can rely on the
same reasoning for deadlock avoidance as shown by Dijkstra [EWD625].

To establish this partial order, the objects referenced by RMM can be classified into two categories:

1. External: A granule state belongs to the external class iff _any_ parameter in _any_ RMI command is an
address of a granule which is expected to be in that state. The following granule states are external:

• GRANULE_STATE_NS

• GRANULE_STATE_DELEGATED

• GRANULE_STATE_RD

• GRANULE_STATE_REC

2. Internal: A granule state belongs to the internal class iff it is not an external. These are objects which are
referenced from another object after that object is locked. Each internal object should be referenced from
exactly one place. The following granule states are internal:

• GRANULE_STATE_RTT

• GRANULE_STATE_DATA

We now state the locking guidelines for RMM as:

1. Granules expected to be in an external state must be locked before locking any granules in an internal state.

38 Chapter 4. Design

Realm Management Monitor

2. Granules expected to be in an external state must be locked in order of their physical address, starting with the
lowest address.

3. Once a granule expected to be in an external state has been locked, its state must be checked against the expected
state. If these do not match, the granule must be unlocked and no further granules may be locked within the
currently-executing RMM command.

4. Granules in an internal state must be locked in order of state:

• RTT

• DATA

5. Granules in the same internal state must be locked in the Implementation defined order for that specific state.

6. A granule’s state can be changed iff the granule is locked and the reference count is zero.

Starvation Avoidance

Currently, the lock-free implementation for RMI.REC.Enter provides Starvation Avoidance in RMM. However, for the
locking implementation, Starvation Avoidance is yet to be accomplished. This can be added by a ticket or MCS style
locking implementation [MCS].

Nested Critical Sections

Spinlocks provide support for nested critical sections. Processes can acquire multiple spinlocks at the same time, as
long as the locking order is not violated.

4.1.5 References

4.2 RMM Folder and Component organization

4.2.1 Root Level Folders and Components

The root level folder structure of the RMM project is as given below.

cmake
configs
docs
drivers
ext
lib
plat
runtime
toolchains
tools

The RMM functionality is implemented by files in lib, ext, drivers, plat and runtime. Each of these folders corresponds
to a component in the project. Every component has a defined role in implementing the RMM functionality and can
in-turn be composed of sub-components of the same role. The components have their own CMakelists.txt file and a
defined public API which is exported via the public interface of the component to its dependent users. The runtime
component is an exception as it does not have a public API.

The dependency relationship between the top level components is shown below :

4.2. RMM Folder and Component organization 39

Realm Management Monitor

Each component and its role is described below :

• lib : This component is a library of re-usable and architectural code which needs to be used by other compo-
nents. The lib component is composed of several sub-components and every sub-component has a public API
which is exported via its public interface. The functionality implemented by the sub-component is not platform
specific although there could be specific static configuration or platform specific data provided via defined pub-
lic interface. All of the sub-components in lib are combined into a single archive file which is then included in
the build.

The lib component depends on ext and plat components. All other components in the project depend on lib.

• ext : This component is meant for external source dependencies of the project. The sub folders are external
open source projects configured as git submodules. The ext component is only allowed to depend on libc
implementation in lib component.

• plat : This component implements the platform abstraction layer or platform layer for short. The platform layer
has the following responsibilities:

1. Implement the platform porting API as defined in platform_api.h.

2. Do any necessary platform specific initialization in the platform layer.

3. Initialize lib sub-components with platform specific data.

4. Include any platform specific drivers from the drivers folder and initialize them as necessary.

Every platform or a family of related platforms is expected to have a folder in plat and only one such folder
corresponding to the platform will be included in the build. The plat component depends on lib and any platform
specific drivers in drivers.

• drivers : The platform specific drivers are implemented in this component. Only the plat component is allowed
to access these drivers via its public interface.

• runtime : This component implements generic RMM functionality which does not need to be shared across
different components. The runtime component does not have a public interface and is not a dependency for any
other component. The runtime is compiled into the binary rmm.img after linking with other components in the
build.

40 Chapter 4. Design

Realm Management Monitor

4.2.2 Component File and Cmake Structure

The below figure shows the folder organization of a typical component (or sub-component)

component x
include

| public.h
src

| private_a.h
| src_a.c

tests
| test.cpp

CMakeLists.txt

The include folder contains the headers exposing the public API of the component. The src contains the private
headers and implementation of the intended functionality. The tests contains the tests for the component and the
CMakeLists.txt defines the build and inheritance rules.

A typical component CMakeLists.txt has the following structure :

add_library(comp-x)

Define any static config option for this component.
arm_config_option()

Pass the config option to the source files as a compile
option.
target_compile_definitions()

Specify any private dependencies of the component. These are not
inherited by child dependencies.
target_link_libraries(comp-x

PRIVATE xxx)

Specify any private dependencies of the component. These are
inherited by child dependencies and are usually included in
public API header of the component.
target_link_libraries(comp-x

PUBLIC yyy)

Export public API via public interface of this component
target_include_directories(comp-x

PUBLIC "include")

Specify any private headers to be included for compilation
of this component.
target_include_directories(comp-x

PRIVATE "src")

Specify source files for component
target_sources(comp-x

PRIVATE xxx)

4.2. RMM Folder and Component organization 41

Realm Management Monitor

4.3 RMM Fake host architecture

RMM supports building and running the program natively as a regular user-space application on the host machine. It
achieves this by emulating the aarch64 specific parts of the program on the host machine by suitable hooks in the
program. The implementation of the hooks can differ based on the target employment of running the program in this
mode. Some of the foreseen employment scenarios of this architecture includes:

1. Facilitate development of architecture independent parts of RMM on the host machine.

2. Enable unit testing of components within RMM with the benefit of not having to mock all the dependencies of
the component.

3. Leverage host development environment and tools for various purposes like debugging, measure code coverage,
fuzz testing, stress testing, runtime analysis of program etc.

4. Enable RMM compliance testing and verification of state machine and locking rules on the host machine.

5. Profile RMM on the host machine and generate useful insights for possible optimizations.

We expect the fake host architecture to be developed over time in future to cover some of the employment scenarios
described above. The current code may not reflect the full scope of this architecture as discussed in this document.

The fake host architecture has some limitations:

1. The architecture is not intended to support multi-thread execution. The intrisics to support critical section and
atomics are emulated as NOP.

2. Cannot execute AArch64 assembly code on the host due to obvious reasons.

3. Cannot emulate AArch64 exceptions during RMM execution although some limited form of handling exceptions
occurring in Realms can probably be emulated.

4. The program links against the native compiler libraries which enables use of development and debug features
available on the host machine. This means the libc implementation in RMM cannot be verified using this
architecture.

The fake host architecture config is selected by setting the config RMM_ARCH=fake_host and the platform has to
be set to a variant of host when building RMM. The different variants of the host platform allow to build RMM for
each of the target employment scenarios as listed above.

42 Chapter 4. Design

Realm Management Monitor

4.3.1 Fake host architecture design

The above figure shows the fake host architecture design. The architecture independent parts of RMM are linked
against suitable host emulation blocks to enable the program to run on the host platform.

The EL3 (monitor) emulation layer emulates the entry and exception from EL3 into Realm-EL2. This includes entry
and exit from RMM as part of RMI handling, entry into RMM as part of warm/cold boot, and EL3 service invocations
by RMM using SMC calls. Similarly the Realm entry/exit emulation block allows emulation of running a Realm. It
would also allow to emulate exit from Realm due to synchronous or asynchronous exceptions like SMC calls, IRQs,
etc.

The hardware emulation block allows to emulate sysreg accesses, granule memory delegation and NS memory accesses
needed for RMM. Since RMM is running as a user space application, it does not have the ability to map granule
memory to a Virtual Address space. This capability is needed for the slot buffer component in RMM. Hence
there is also need to emulate VA mapping for this case.

The AArch64 intrinsics emulation block allows emulation of exclusives, assembly instructions for various architecture
extensions, barriers and atomics, cache and TLB operations although most of them are defined as NOP at the moment.

Within the RMM source tree, all files within the fake_host folder of each component implement the necessary
emulation on host. Depending on the target employment for the fake host architecture, it is necessary to adapt the
behaviour of the emulation layer. This is facilitated by the APIs defined in host_harness.h header. The imple-
mentation of the API is done by the host platform and each variant of the host can have a different implementation
of the API suiting its target employment. The API also facilitates test and verification of the emulated property as
needed by the employment.

4.3. RMM Fake host architecture 43

Realm Management Monitor

4.3.2 Fake host architecture employment scenarios implemented or ongoing

This section describes the currently implemented scenarios utilizing the fake host architecture.

1. Unit testing framework in RMM which allows testing public API of components and generation of code cover-
age data.

4.4 RMM Cold and Warm boot design

This section covers the boot design of RMM. The below diagram gives an overview of the boot flow.

44 Chapter 4. Design

Realm Management Monitor

4.4. RMM Cold and Warm boot design 45

Realm Management Monitor

Both warm and cold boot enters RMM at the same entry point rmm_entry(). This scheme simplifies the RMM-EL3
communications interface. The boot args as specified by boot contract are stashed to high registers.

The boot is divided into several phases as described below:

1. Sysreg and C runtime initialization phase.

The essential system registers are initialized. SCTLR_EL2.I is set to 1 which means instruction accesses
to Normal memory are Outer Shareable, Inner Write-Through cacheable, Outer Write-Through cacheable.
SCTLR_EL2.C is also set 1 and data accesses default to Device-nGnRnE. The cpu-id, received as part of
boot args, is programmed to tpidr_el2 and this can be retrieved using the helper function my_cpuid().
The per-CPU stack is also initialized using the cpu-id received and this completes the C runtime initialization
for warm boot.

Only the primary CPU enters RMM during cold boot and a global variable is used to keep track whether it is
cold or warm boot. If cold boot, the Global Descriptor Table (GDT) and Relocations are fixed up so that RMM
can run as position independent executable (PIE). The BSS is zero initialized which completes the C runtime
initialization for cold boot.

2. Platform initialization phase

The boot args are restored to their original registers and plat_setup() and plat_warmboot_setup() are invoked for
cold and warm boot respectively. During cold boot, the platform is expected to consume the boot manifest which
is part of the RMM-EL3 communications interface. The platform initializes any platform specific peripherals
and also intializes and configures the translation table contexts for Stage 1.

3. MMU enable phase

The EL2&0 translation regime is enabled after suitable TLB and cache invalidations.

4. RMM Main phase

Any cold boot or warm initialization of RMM components is done in this phase. This phase also involves
invoking suitable EL3 services, like acquiring platform attestation token for Realm attestation.

After all the phases have completed successfully, RMM issues RMM_BOOT_COMPLETE SMC. The next entry into
RMM from EL3 would be for handling RMI calls and hence the next intruction following the SMC call branches to
the main SMC handler routine.

4.5 RMM-EL3 communication specification

The communication interface between RMM and EL3 is specified in RMM-EL3 communications interface specifica-
tion in the TF-A repository.

46 Chapter 4. Design

https://trustedfirmware-a.readthedocs.io/en/latest/components/rmm-el3-comms-spec.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/rmm-el3-comms-spec.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/rmm-el3-comms-spec.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/rmm-el3-comms-spec.html

CHAPTER

FIVE

GLOSSARY

This glossary provides definitions for terms and abbreviations used in the RMM documentation.

You can find additional definitions in the Arm Glossary.

AArch64 64-bit execution state of the ARMv8 ISA

PAR Protected Address Range

PAS Physical Address Space

RD Realm Descriptor

REC Realm Execution Context

RMM Realm Management Monitor

TF-A Trusted Firmware-A

47

https://developer.arm.com/support/arm-glossary

Realm Management Monitor

48 Chapter 5. Glossary

BIBLIOGRAPHY

[EWD310] Dijkstra, E.W. Hierarchical ordering of sequential processes. EWD 310.

[EWD625] Dijkstra, E.W. Two starvation free solutions to a general exclusion problem. EWD 625.

[MCS] Mellor-Crummey, John M. and Scott, Michael L. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM TOCS, Volume 9, Issue 1, Feb. 1991.

[WS2001] Stallings, W. (2001). Operating systems: Internals and design principles. Upper Saddle River, N.J: Pren-
tice Hall.

49

Realm Management Monitor

50 Bibliography

INDEX

A
AArch64, 47

P
PAR, 47
PAS, 47

R
RD, 47
REC, 47
RMM, 47

T
TF-A, 47

51

	About
	Getting Started Guides
	Process
	Design
	Glossary
	Bibliography
	Index

