
Realm Management Monitor

TF-RMM Contributors

May 02, 2024

CONTENTS

1 About 1

2 Getting Started Guides 11

3 Process 21

4 Design 35

5 Security 57

6 Resources 77

7 Glossary 81

Bibliography 83

Index 85

i

ii

CHAPTER

ONE

ABOUT

1.1 Readme for TF-RMM

TF-RMM (or simply RMM) is the Trusted Firmware Implementation of the Realm Management Monitor (RMM) Spec-
ification. The RMM is a software component that runs at Realm EL2 and forms part of a system which implements the
Arm Confidential Compute Architecture (Arm CCA). Arm CCA is an architecture which provides Protected Execution
Environments called Realms.

Prior to Arm CCA, virtual machines have to trust hypervisors that manage them and a resource that is managed by
the hypervisor is also accessible by it. Exploits against the hypervisors can leak confidential data held in the virtual
machines. Arm CCA introduces a new confidential compute environment called a Realm. Any code or data belonging
to a Realm, whether in memory or in registers, cannot be accessed or modified by the hypervisor. This means that the
Realm owner does not need to trust the hypervisor that manages the resources used by the Realm.

The Realm VM is initiated and controlled by the Normal world Hypervisor. To allow the isolated execution of the
Realm VM, a new component called the Realm Management Monitor (RMM) is introduced, executing at R_EL2.
The hypervisor interacts with the RMM via Realm Management Interface (RMI) to manage the Realm VM. Policy
decisions, such as which Realm to run or what memory to be delegated to the Realm are made by the hypervisor and
communicated via the RMI. The RMM also provides services to the Realm via the Realm Service Interface (RSI). These
services include cryptographic services and attestation. The Realm initial state can be measured and an attestation
report, which also includes platform attestation, can be requested via RSI. The RSI is also the channel for memory
management requests from the Realm VM to the RMM.

The following diagram shows the complete Arm CCA software stack running a confidential Realm VM :

Figure 1. Realm VM execution

The TF-RMM interacts with the Root EL3 Firmware via the RMM-EL3 Communication Interface and this is imple-
mented by the reference EL3 Firmware implementation TF-A.

1

https://scan.coverity.com/projects/tf-rmm-tf-rmm
https://tf-rmm.readthedocs.io/en/latest/?badge=latest:alt:DocumentationStatus
https://www.trustedfirmware.org/projects/tf-rmm/
https://www.trustedfirmware.org/
https://developer.arm.com/documentation/den0137/1-0eac5/?lang=en
https://developer.arm.com/documentation/den0137/1-0eac5/?lang=en
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.trustedfirmware.org/projects/tf-rmm/
https://trustedfirmware-a.readthedocs.io/en/latest/components/rmm-el3-comms-spec.html
https://www.trustedfirmware.org/projects/tf-a/

Realm Management Monitor

More details about the RMM and how it fits in the Software Stack can be found in Arm CCA Software Stack Guide.

The Change-log and Release notes has the details of features implemented by this version of TF-RMM and lists any
known issues.

1.1.1 License

Unless specifically indicated otherwise in a file, TF-RMM files are provided under the BSD-3-Clause License. For
contributions, please see License and Copyright for Contributions.

Third Party Projects

The TF-RMM project requires to be linked with certain other 3rd party projects and they are to be cloned from their
repositories into ext folder before building. The projects are MbedTLS, t_cose, QCBOR and CppUTest.

The project also contains files which are imported from other projects into the source tree and may have a different
license. Such files with different licenses are listed in the table below. This table is used by the checkspdx tool in the
project to verify license headers.

Table 1: List of files with different license
File License
lib/libc/src/printf.c MIT
lib/libc/include/stdio.h MIT
lib/libc/src/strlcpy.c ISC
lib/libc/src/strnlen.c BSD-2-Clause
lib/allocator/src/memory_alloc.c Apache-2.0

1.1.2 Contributing

We gratefully accept bug reports and contributions from the community. Please see the Contributor’s Guide for details
on how to do this.

1.1.3 Feedback and support

Feedback is requested via email to: tf-rmm@lists.trustedfirmware.org.

To report a bug, please file an issue on Github

1.2 Project Maintenance

Realm Management Monitor (RMM) is an open governance community project. All contributions are ultimately
merged by the maintainers listed below. Technical ownership of most parts of the codebase falls on the code own-
ers listed below. An acknowledgement from these code owners is required before the maintainers merge a contribution.

More details may be found in the Project Maintenance Process document.

2 Chapter 1. About

https://developer.arm.com/documentation/den0127/0100/Overview
https://tf-rmm.readthedocs.io/en/latest/about/change-log.html
https://www.trustedfirmware.org/projects/tf-rmm/
https://www.trustedfirmware.org/projects/tf-rmm/
https://tf-rmm.readthedocs.io/en/latest/about/license.html
https://tf-rmm.readthedocs.io/en/latest/process/contributing.html#license-and-copyright-for-contributions
https://www.trustedfirmware.org/projects/tf-rmm/
https://github.com/ARMmbed/mbedtls.git
https://github.com/laurencelundblade/t_cose
https://github.com/laurencelundblade/QCBOR.git
https://github.com/cpputest/cpputest.git
https://tf-rmm.readthedocs.io/en/latest/process/contributing.html
mailto:tf-rmm@lists.trustedfirmware.org
https://github.com/TF-RMM/tf-rmm/issues
https://developer.trustedfirmware.org/w/collaboration/project-maintenance-process/

Realm Management Monitor

1.2.1 Maintainers

Mail
Alexei Fedorov <Alexei.Fedorov@arm.com>

GitHub ID
AlexeiFedorov

Mail
Arunachalam Ganapathy <arunachalam.ganapathy@arm.com>

GitHub ID
arugan02

Mail
Dan Handley <dan.handley@arm.com>

GitHub ID
danh-arm

Mail
Javier Almansa Sobrino <javier.almansasobrino@arm.com>

GitHub ID
javier-almansasobrino

Mail
Mate Toth-Pal <mate.toth-pal@arm.com>

GitHub ID
Máté Tóth-Pál

Mail
Soby Mathew <soby.mathew@arm.com>

GitHub ID
soby-mathew

1.3 Change-log and Release notes

1.3.1 v0.4.0

The following sections have the details on the release. This release has been verified with TF-A v2.10 release.

New features in this release

• Added initial partial support for analysing RMM source code with CBMC (https://www.cprover.org/cbmc/).

– A new HOST_VARIANT, host_cbmc, has been introduced for this purpose.

– The CBMC testbench files and autogenerated files from RMM machine readable specification are imported
into the source tree.

– An application note for the same is added to the documentation.

• Aligned the implementation to RMM v1.0 EAC5 specification.

– The relevant tag for the alignment is rmm-spec-v1.0-eac5.

– There is also an intermediate RMM v1.0 EAC2 alignment which is tagged rmm-spec-v1.0-eac2.

1.3. Change-log and Release notes 3

mailto:Alexei.Fedorov@arm.com
https://github.com/AlexeiFedorov
mailto:arunachalam.ganapathy@arm.com
https://github.com/arugan02
mailto:dan.handley@arm.com
https://github.com/danh-arm
mailto:javier.almansasobrino@arm.com
https://github.com/javieralso-arm/
mailto:mate.toth-pal@arm.com
https://github.com/matetothpal
mailto:soby.mathew@arm.com
https://github.com/soby-mathew
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tag/?h=v2.10.0
https://www.cprover.org/cbmc/
https://developer.arm.com/documentation/den0137/1-0eac5/?lang=en
https://git.trustedfirmware.org/TF-RMM/tf-rmm.git/tag/?h=rmm-spec-v1.0-eac5
https://git.trustedfirmware.org/TF-RMM/tf-rmm.git/tag/?h=rmm-spec-v1.0-eac2

Realm Management Monitor

• Supported save and restore of Non Secure SME context when Realms are scheduled.

– The SIMD abstraction in RMM was reworked to cater for this requirement.

– Added support to emulate SME specific feature ID registers.

– Support injecting UNDEF exception into realm when SME is accessed within it.

– Also RMM now can handle SVE hint bit as specified by SMCCC v1.3 specification.

• Added TF-RMM Threat Model to the documentation.

• Added capability to privately map the per-CPU stack.

– This contains any stack overflows to the particular CPU and prevents a CPU from corrupting another CPU
stack.

• Added FEAT_PAUTH and FEAT_BTI support to RMM and also capability to use FEAT_PAUTH within realms.

• Migrate to PSA Crypto API for attestation and measurement functionality in RMM.

• Added FEAT_LPA2 support to Stage 1 MMU code (lib/xlat) in RMM.

• Added Stage 1 MMU setup design document.

Build/Testing/Tooling improvements

• Added static commit message checker which enforces the commit message guidelines mandated for the project.

• Added clang-tidy checker as one of the static analyzers.

– Several fixes to errors flagged by the static checker have been fixed.

• Fixed issues found in xlat lib unittests.

• Added github workflow for git submodules so that the TF-RMM dependencies display correctly in github.

• Added github workflow to configure an automatic message for PRs on GitHub and also build and run RMM
unittests for every update of the main branch.

• Added FEAT_LPA2 unit tests for lib/xlat module.

• Added RSI logger unit tests.

Platforms

• The support for QEMU virt platform was merged.

Bug fixes/improvements in this release

• Fixed issue with TLB invalidations for unprotected mappings during RMI_RTT_DESTROY command.

• Fixed an issue wherein attest token write may return without releasing lock on the last level RTT of the mapped
buffer.

• Enable TSW bit in hcr_el2 when executing in Realm world so as to trap any data cache maintenance instructions
that operate by Set/Way.

• Fixed issues flagged by coverity online scan. The defects detected can be found in the TF-RMM coverity scan
online homepage.

• Fixed issues in s2tt management related to NS memory assignment/unassignment.

4 Chapter 1. About

https://tf-rmm.readthedocs.io/en/latest/security/threat_model/index.html
https://scan.coverity.com/projects/tf-rmm-tf-rmm
https://scan.coverity.com/projects/tf-rmm-tf-rmm

Realm Management Monitor

• Added missing check to gicv3_hcr field.

• Cache line align xlat lib data structures accessed by secondary CPUs to avoid data corruption due to mismatched
memory attribute accesses by RMM during warm boot.

• Corrected linker options when building qcbor library.

• Fixes to comply with MISRA coding guidelines.

• Adjusted mbedTLS heap size depending on MAX_CPUS in RMM.

• Fixed issue with RMI_DATA_CREATE_UNKNOWN setting RIPAS to RAM.

• Added ‘ipa_bound’ failure condition in RMI_DATA_DESTROY handler. Also added ‘level_bound’ failure con-
dition for RMI_RTT_MAP_UNPROTECTED and RMI_RTT_UNMAP_UNPROTECTED command handlers.

• Fixed issue with rsi_log_on_exit() and modified the logging format.

• Fixed issue with change ipa_align failure condition.

• Unified design of RSI/PSCI handlers.

• The issue with RMM config RMM_FPU_USE_AT_REL2 is fixed and the SIMD registers are saved and restored
depending on the live register context in use which be one of FPU, SVE or SME.

• The compatibility check for RMM-EL3 interface version is hardened.

• Issue related to attestation token interruption flow is fixed.

• Enhanced the fake_host sample application to do Realm token creation.

• Fixed D-cache maintenance in fvp_set_dram_layout().

• Updated t_cose submodule to use upstream version rather than a forked version.

Known issues and limitations

• Some capabilities as mentioned in RMM v1.0 EAC5 specification are restricted or absent in TF-RMM as listed
below:

– The RMI_RTT_FOLD command only allows folding upto Level 2 even though the specification allows
upto Level 1.

– The support for Self-hosted debug in Realms is not implemented.

– Although the RMM allows CCA attestation token sizes of larger than 4KB, there is a limitation on the size
of the Platform attestation token part. On the RMM-EL3 interface, there is only a shared buffer of 4KB
that is currently shared on the FVP. This needs to be enhanced so that larger platform token sizes can be
tested.

• The rmm-el3-ifc component does not always reset the RMM to the correct state on encountering an error. This
needs to be corrected.

• The invocation of mmio_emulation() and sea_inj() functions need to be mutually exclusive during schedule of a
REC. Currently both the cases are allowed to be satisfied at the same time which is incorrect.

1.3. Change-log and Release notes 5

https://developer.arm.com/documentation/den0137/1-0eac5/?lang=en

Realm Management Monitor

Upcoming features

• FEAT_LPA2 support for Stage 2 MMU code (s2tt) in RMM.

• Add unit-tests for Stage 2 MMU code (s2tt) and also any associated rework for the s2tt component.

• Enhance CBMC analysis to more RMI commands.

• Fuzz testing for RMM utilizing the fake_host architecture.

• Support for new capabilities like Device assignment as mandated by future versions of RMM specification.

• Integrate more static analyzers into RMM build system.

• Implement support for Self-hosted debug in realms.

1.3.2 v0.3.0

The following sections have the details on the release. This release has been verified with TF-A v2.9 release.

New features in this release

• Add support to create Realms which can make use of SVE, if present in hardware.

• Refactor the Stage 1 translation table library lib/xlat API to better fit RMM usage. Also harden dynamic mapping
via slot buffer mechanism by use of TRANSIENT software defined attribute.

• Add PMU support for Realms as described by RMM v1.0 Beta0 specification.

• Support getting DRAM info from the Boot manifest dynamically at runtime.

– RMM can now support the 2nd DDR bank on FVP.

Build/Testing improvements

• Define a unit test framework using CppUTest for RMM.

• Add unittests for granule, slot-buffer and Stage 1 translation table lib xlat.

• Improve the fake-host mock capability by adding support for per PE sysreg emulation.

• Improve the VA to PA mock layer for fake-host.

• Enable generation of gprof profiling data as part of fake-host runs.

• Improve the sample application on host-build platform by adding the cold attestation initialization flow. Also
a sample minimal Realm create, run and destroy sequence is added to showcase the RMI calls involved.

• Further improvements to the unit test framework :

– Restore the sysreg state between test runs so each test gets a known sysreg state.

– Add capability to test assertions.

– Support dynamic behaviour for test harness depending on requirement.

– Add support for coverage report generation as part of unit test run.

• Build improvements in RMM:

– Move mbedTLS build from configure stage to build stage.

– Simplify QCBOR build.

6 Chapter 1. About

https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tag/?h=v2.9.0

Realm Management Monitor

– Fix build artefact directory path to better cater to multi-config builds.

Bug fixes in this release

• Remove HVC exit handling from RMI_REC_ENTER handler.

• Fix parameter in measurement_extend_sha512().

• Fix issues in lib/xlat for some corner cases.

• Mask MTE capability from id_aa64pfr1_el1 so that Realms can see that MTE is not supported.

• Add isb() after writes to cptr_el2 system register.

• Fix the granule alignment check on granule_addr.

• Fix some cppcheck warnings.

• Properly handle errors for granule (un)delegate calls.

• Fix the incorrect bit map manipulation for tracking VMID for realms.

• Fix some incorrect Block mapping cases in Stage 2 translation.

Upcoming features

• RMM EAC Specification alignment.

• Support Self-Hosted Debug Realms.

• Support FEAT_PAuth for Realms and utilize the same for RMM.

• Support LPA2 for Stage 2 Realm translation tables.

• Threat model covering RMM data flows.

• Enable Bounded Model Checker (CBMC) for source analysis.

• Save and restore SME/SME2 context belonging to NS Host. This allows NS Host to make use of SME/SME2
when Realms are scheduled.

Known issues and limitations

• The size of RsiHostCall structure is 256 bytes in the implementation and aligns to RMM Beta1 specification
rather than the 4 KB size specified in RMM Beta0 specification.

• The RMM Beta0 specification does not require to have a CBOR bytestream wrapper around the cca-platform-
token and cca-realm-delegated-token, but the RMM implementation does so and this is aligned with later versions
of the RMM specification (Beta2 onwards).

• The RMM config RMM_FPU_USE_AT_REL2 does not work as intended and this config is disabled by default. This
will be fixed in a future release.

• When the RSI_ATTEST_TOKEN_CONTINUE call is interrupted and then resumed later by Host via
RMI_REC_ENTER, the original SMC is replayed again with the original arguments rather than returning
RSI_INCOMPLETE error code to Realm. The result is that the interrupted RSI call is continued again till comple-
tion and then returns back to Realm with the appropriate error code.

1.3. Change-log and Release notes 7

https://developer.arm.com/documentation/den0137/1-0bet1/?lang=en
https://developer.arm.com/documentation/den0137/1-0bet0/?lang=en
https://developer.arm.com/documentation/den0137/1-0bet0/?lang=en

Realm Management Monitor

1.3.3 v0.2.0

• This release has been verified with TF-A v2.8 release.

• The release has the following fixes and enhancements:

– Add support to render documentation on read-the-docs.

– Fix the known issue with RSI_IPA_STATE_GET returning RSI_ERROR_INPUT for a destroyed IPA instead
of emulating data abort to NS Host.

– Fix an issue with RSI_HOST_CALL not returning back to Host to emulate a stage2 data abort.

– Harden an assertion check for do_host_call().

• The other known issues and limitations remain the same as listed for v0.1.0.

1.3.4 v0.1.0

• First TF-RMM source release aligned to RMM Beta0 specification. The specified interfaces : Realm Manage-
ment Interface (RMI) and Realm Service Interface (RSI) are implemented which can attest and run Realm VMs
as described by the Arm CCA Architecture.

Upcoming features

• Support SVE, Self-Hosted Debug and PMU in Realms

• Support LPA2 for Stage 2 Realm translation tables.

• Threat model covering RMM data flows.

• Enable Bounded Model Checker (CBMC) for source analysis.

• Unit test framework based on RMM Fake host architecture.

Known issues and limitations

The following is a list of issues which are expected to be fixed in the future releases of TF-RMM :

• The size of RsiHostCall structure is 256 bytes in the implementation and aligns to RMM Beta1 specification
rather than the 4 KB size specified in RMM Beta0 specification.

• The RSI_IPA_STATE_GET command returns error RSI_ERROR_INPUT for a destroyed IPA instead of emulating
data abort to Host.

• The RMM Beta0 specification does not require to have a CBOR bytestream wrapper around the cca-platform-
token and cca-realm-delegated-token, but the RMM implementation does so.

8 Chapter 1. About

https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tag/?h=v2.8.0
https://developer.arm.com/documentation/den0137/1-0bet0/?lang=en
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://developer.arm.com/documentation/den0137/1-0bet1/?lang=en
https://developer.arm.com/documentation/den0137/1-0bet0/?lang=en
https://developer.arm.com/documentation/den0137/1-0bet0/?lang=en

Realm Management Monitor

1.4 Developer Certificate of Origin

Developer Certificate of Origin Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors. 1 Letterman Drive Suite D4700 San Francisco,
CA, 94129

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I have the right to submit it under the open source
license indicated in the file; or

(b) The contribution is based upon previous work that, to the best of my knowledge, is covered under an appropriate
open source license and I have the right under that license to submit that work with modifications, whether created
in whole or in part by me, under the same open source license (unless I am permitted to submit under a different
license), as indicated in the file; or

(c) The contribution was provided directly to me by some other person who certified (a), (b) or (c) and I have not
modified it.

(d) I understand and agree that this project and the contribution are public and that a record of the contribution
(including all personal information I submit with it, including my sign-off) is maintained indefinitely and may
be redistributed consistent with this project or the open source license(s) involved.

1.5 License

BSD 3-Clause License

Copyright TF-RMM Contributors All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.4. Developer Certificate of Origin 9

Realm Management Monitor

10 Chapter 1. About

CHAPTER

TWO

GETTING STARTED GUIDES

2.1 Prerequisite

This document describes the software requirements for building RMM for AArch64 target platforms.

It may possible to build RMM with combinations of software packages that are different from those listed below,
however only the software described in this document can be officially supported.

2.2 Build Host

The RMM officially supports a limited set of build environments and setups. In this context, official support means that
the environments listed below are actively used by team members and active developers, hence users should be able to
recreate the same configurations by following the instructions described below. In case of problems, the RMM team
provides support only for these environments, but building in other environments can still be possible.

We recommend at least Ubuntu 20.04 LTS (x64) for build environment. The arm64/AArch64 Ubuntu and other Linux
distributions should also work fine, provided that the necessary tools and libraries can be installed.

2.3 Tool & Dependency overview

The following tools are required to obtain and build RMM:

11

Realm Management Monitor

Table 1: Tool dependencies
Name Version Component
C compiler see Setup Toolchain Firmware
CMake >=3.15.0 Firmware, Documentation
GNU Make >4.0 Firmware, Documentation
Python 3.x Firmware, Documentation
Perl >=5.26 Firmware, Documentation
ninja-build Firmware (using Ninja Generator)
Sphinx >=2.4,<3.0.0 Documentation
sphinxcontrib-plantuml Documentation
sphinx-rtd-theme Documentation
Git Firmware, Documentation
Graphviz dot >v2.38.0 Documentation
docutils >v2.38.0 Documentation
gcovr >=v4.2 Tools(Coverage analysis)
CBMC >=5.84.0 Tools(CBMC analysis)
CPPcheck >=1.90 Tools(CPPcheck)

2.4 Setup Toolchain

To compile RMM code for an AArch64 target, at least one of the supported AArch64 toolchains have to be available
in the build environment.

Currently, the following compilers are supported:

• GCC (aarch64-none-elf-) >= 10.2-2020.11 (from the Arm Developer website)

• Clang+LLVM >= 14.0.0 (from the LLVM Releases website)

The respective compiler binary must be found in the shell’s search path. Be sure to add the bin/ directory if you have
downloaded a binary version. The toolchain to use can be set using RMM_TOOLCHAIN parameter and can be set to either
llvm or gnu. The default toolchain is gnu.

For non-native AArch64 target build, the CROSS_COMPILE environment variable must contain the right target triplet
corresponding to the AArch64 GCC compiler. Below is an example when RMM is to be built for AArch64 target on a
non-native host machine and using GCC as the toolchain.

export CROSS_COMPILE=aarch64-none-elf-
export PATH=<path-to-aarch64-gcc>/bin:$PATH

Please note that AArch64 GCC must be included in the shell’s search path even when using Clang as the compiler as
LLVM does not include some C standard headers like stdlib.h and needs to be picked up from the include folder of the
AArch64 GCC. Below is an example when RMM is to be built for AArch64 target on a non-native host machine and
using LLVM as the toolchain.

export CROSS_COMPILE=aarch64-none-elf-
export PATH=<path-to-aarch64-gcc>/bin:<path-to-clang+llvm>/bin:$PATH

The CROSS_COMPILE variable is ignored for fake_host build and the native host toolchain is used for the build.

12 Chapter 2. Getting Started Guides

https://developer.arm.com/open-source/gnu-toolchain/gnu-a/downloads
https://releases.llvm.org/

Realm Management Monitor

2.5 Package Installation (Ubuntu-20.04 x64)

If you are using the recommended Ubuntu distribution then we can install the required packages with the following
commands:

1. Install dependencies:

sudo apt-get install -y git build-essential python3 python3-pip make ninja-build
sudo snap install cmake

2. Verify cmake version:

cmake --version

Note: Please download cmake 3.19 or later version from https://cmake.org/download/.

3. Add CMake path into environment:

export PATH=<CMake path>/bin:$PATH

2.6 Install python dependencies

Note: The installation of Python dependencies is an optional step. This is required only if building documentation.

RMM’s docs/requirements.txt file declares additional Python dependencies. Install them with pip3:

pip3 install --upgrade pip
cd <rmm source folder>
pip3 install -r docs/requirements.txt

2.7 Install coverage tools analysis dependencies

Note: This is an optional step only needed if you intend to run coverage analysis on the source code.

On Ubuntu, gcovr tool can be installed in two different ways:

Using the pagckage manager:

sudo apt-get install gcovr

The second (and recommended) way is install it with pip3:

pip3 install --upgrade pip
pip3 install gcovr

2.5. Package Installation (Ubuntu-20.04 x64) 13

https://cmake.org/download/

Realm Management Monitor

2.8 Getting the RMM Source

Source code for RMM is maintained in a Git repository hosted on TrustedFirmware.org. To clone this repository from
the server, run the following in your shell:

git clone --recursive https://git.trustedfirmware.org/TF-RMM/tf-rmm.git

2.8.1 Additional steps for Contributors

If you are planning on contributing back to RMM, your commits need to include a Change-Id footer as explained in
Mandated Trailers. This footer is generated by a Git hook that needs to be installed inside your cloned RMM source
folder.

The TF-RMM Gerrit page under trustedfirmware.org contains a Clone with commit-msg hook subsection under its
Download header where you can copy the command to clone the repo with the required git hooks. Please use the SSH
option to clone the repository on your local machine.

If needed, you can also manually install the hooks separately on an existing repo:

curl -Lo $(git rev-parse --git-dir)/hooks/commit-msg https://review.trustedfirmware.org/
→˓tools/hooks/commit-msg
chmod +x $(git rev-parse --git-dir)/hooks/commit-msg

You can read more about Git hooks in the githooks page of the Git hooks documentation.

2.9 Install Cppcheck and dependencies

Note: The installation of Cppcheck is an optional step. This is required only if using the Cppcheck static analysis.

Follow the public documentation to install Cppcheck either from the official website https://cppcheck.sourceforge.io/
or from the official github https://github.com/danmar/cppcheck/

If you own a valid copy of a MISRA rules file:

cp -a <path to the misra rules file>/<file name> ${RMM_SOURCE_DIR}/tools/cppcheck/misra.
→˓rules

2.10 Install CBMC

Note: The installation of CBMC is an optional step. This is required only if running source code analysis with CBMC.

Follow the public documentation to install CBMC either from the official website https://www.cprover.org/cbmc/ or
from the official github https://github.com/diffblue/cbmc

14 Chapter 2. Getting Started Guides

https://review.trustedfirmware.org/admin/repos/TF-RMM/tf-rmm
https://git-scm.com/docs/githooks
https://cppcheck.sourceforge.io/
https://github.com/danmar/cppcheck/
https://www.cprover.org/cbmc/
https://github.com/diffblue/cbmc

Realm Management Monitor

2.11 Performing an Initial Build

The RMM sources can be compiled using multiple CMake options.

For detailed instructions on build configurations and examples see RMM Build Examples.

A typical build command for the FVP platform using GCC toolchain is shown below:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR}

2.12 Running the RMM

The RMM is part of the CCA software stack and relies on EL3 Firmware to load the binary at boot time appropriately.
It needs both EL3 Firmware and Non-Secure Host to be present at runtime for its functionality. The EL3 Firmware
must comply to RMM-EL3 Communication Specification and is typically the TF-A. The Non-Secure Host can be an
RME aware hypervisor or an appropriate Test utility running in Non-Secure world which can interact with RMM via
Realm Management Interface (RMI).

The TF-A project includes build and run instructions for an RME enabled system on the FVP platform as part of TF-A
RME documentation. The rmm.img binary is provided to the TF-A bootloader to be packaged in FIP using RMM build
option in TF-A.

If RMM is built for the fake_host architecture (see RMM Fake Host Build), then the generated rmm.elf binary can run
natively on the Host machine. It does this by emulating parts of the system as described in RMM Fake host architecture
design.

2.13 RMM Build Examples

The RMM supports a wide range of build configuration options. Some of these options are more regularly exercised
by developers, while others are for advanced and experimental usage only.

RMM can be built using either GNU(GCC) or LLVM(Clang) toolchain. See this section for toolchain setup and the
supported versions.

The build is performed in 2 stages:

Configure Stage: In this stage, a default config file can be specified which configures a sane config for the chosen
platform. If this default config needs to be modified, it is recommended to first perform a default config and then
modify using the cmake ncurses as shown in CMake UI Example.

Build Stage: In this stage, the source build is performed by specifying the –build option. See any of the commands
below for an example.

Note: It is recommended to clean build if any of the build options are changed from previous build.

Below are some of the typical build and configuration examples frequently used in RMM development for the FVP
Platform. Detailed configuration options are described here.

RMM also supports a fake_host build which can be used to build RMM for test and code analysis on the host machine.
See this section here for more details.

2.11. Performing an Initial Build 15

https://trustedfirmware-a.readthedocs.io/en/latest/components/rmm-el3-comms-spec.html
https://www.trustedfirmware.org/projects/tf-a/
https://www.trustedfirmware.org/projects/tf-a/
https://trustedfirmware-a.readthedocs.io/en/latest/components/realm-management-extension.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/realm-management-extension.html
https://www.trustedfirmware.org/projects/tf-a/

Realm Management Monitor

1. Perform an initial default build with minimum configuration options:

Build using gnu toolchain

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR}

Build using LLVM toolchain

cmake -DRMM_CONFIG=fvp_defcfg -DRMM_TOOLCHAIN=llvm -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_
→˓DIR}
cmake --build ${RMM_BUILD_DIR}

2. Perform an initial default config, then modify using ccmake ncurses UI:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
ccmake -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR}

3. Perform a debug build and specify a log level:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR} -DCMAKE_BUILD_
→˓TYPE=Debug -DLOG_LEVEL=50
cmake --build ${RMM_BUILD_DIR}

4. Perform a documentation build:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR} -DRMM_DOCS=ON
cmake --build ${RMM_BUILD_DIR} -- docs

5. Perform a clean verbose build:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} --clean-first --verbose

6. Perform a build with Ninja Genenerator:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR} -DCMAKE_BUILD_
→˓TYPE=${BUILD_TYPE} -G "Ninja" -DLOG_LEVEL=50
cmake --build ${RMM_BUILD_DIR}

7. Perform a build with Ninja Multi Config Genenerator:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR} -G "Ninja Multi-
→˓Config" -DLOG_LEVEL=50
cmake --build ${RMM_BUILD_DIR} --config ${BUILD_TYPE}

8. Perform a Cppcheck static analysis:

cmake -DRMM_CONFIG=fvp_defcfg -DCMAKE_EXPORT_COMPILE_COMMANDS=ON -S ${RMM_SOURCE_DIR} -B
→˓${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- cppcheck
cat ${BUILD_DIR}/tools/cppcheck/cppcheck.xml

9. Perform a Cppcheck static analysis with MISRA:

16 Chapter 2. Getting Started Guides

Realm Management Monitor

cmake -DRMM_CONFIG=fvp_defcfg -DCMAKE_EXPORT_COMPILE_COMMANDS=ON -S ${RMM_SOURCE_DIR} -B
→˓${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- cppcheck-misra
cat ${BUILD_DIR}/tools/cppcheck/cppcheck_misra.xml

10. Perform a checkpatch analysis:

Run checkpatch on commits in the current branch against BASE_COMMIT (default origin/master):

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- checkpatch

Run checkpatch on entire codebase:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- checkcodebase

11. Perform a checkspdx analysis:

Run checkspdx on commits in the current branch against BASE_COMMIT (default origin/master):

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- checkspdx-patch

Run checkspdx on entire codebase:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- checkspdx-codebase

13. Check header file include order:

Run checkincludes-patch on commits in the current branch against BASE_COMMIT (default origin/master):

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- checkincludes-patch

Run checkincludes on entire codebase:

cmake -DRMM_CONFIG=fvp_defcfg -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- checkincludes-codebase

14. Perform a clang-tidy analysis:

Run clang-tidy on commits in the current branch against BASE_COMMIT (default origin/master):

cmake -DRMM_CONFIG=fvp_defcfg -DRMM_TOOLCHAIN=llvm -DCMAKE_EXPORT_COMPILE_COMMANDS=ON -S
→˓${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- clang-tidy-patch

Run clang-tidy on entire codebase:

cmake -DRMM_CONFIG=fvp_defcfg -DRMM_TOOLCHAIN=llvm -DCMAKE_EXPORT_COMPILE_COMMANDS=ON -S
→˓${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- clang-tidy-codebase

Note that clang-tidy will work with all configurations. It will only check the source files that are used for the specified
configuration.

2.13. RMM Build Examples 17

Realm Management Monitor

15. Perform unit tests on development host:

Build and run unit tests on host platform. It is recommended to enable the Debug build of RMM.

cmake -DRMM_CONFIG=host_defcfg -DHOST_VARIANT=host_test -DCMAKE_BUILD_TYPE=Debug -S $
→˓{RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- run-unittests

Run unittests for a specific test group(s) (e.g. unittests whose group starts with ‘xlat’)

cmake -DRMM_CONFIG=host_defcfg -DHOST_VARIANT=host_test -DCMAKE_BUILD_TYPE=Debug -S $
→˓{RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- build -j
${RMM_BUILD_DIR}/Debug/rmm.elf -gxlat -v -r${NUMBER_OF_TEST_ITERATIONS}

16. Generate Coverage Report.

It is possible to generate a coverage report for a last execution of the host platform (whichever the variant) by using the
run-coverage build target.

For example, to generate coverate report on the whole set of unittests:

cmake -DRMM_CONFIG=host_defcfg -DHOST_VARIANT=host_test -DRMM_COVERAGE=ON -DCMAKE_BUILD_
→˓TYPE=Debug -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- run-unittests
cmake --build ${RMM_BUILD_DIR} -- run-coverage

Run coverage analysis on a specific set of unittests (e.g. unittests whose group starts with ‘xlat’)

cmake -DRMM_CONFIG=host_defcfg -DHOST_VARIANT=host_test -DRMM_COVERAGE=ON -DCMAKE_BUILD_
→˓TYPE=Debug -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- build -j
${RMM_BUILD_DIR}/Debug/rmm.elf -gxlat
cmake --build ${RMM_BUILD_DIR} -- run-coverage

Run coverage analysis on the host_build variant of host platform:

cmake -DRMM_CONFIG=host_defcfg -DHOST_VARIANT=host_build -DRMM_COVERAGE=ON -DCMAKE_BUILD_
→˓TYPE=Debug -S ${RMM_SOURCE_DIR} -B ${RMM_BUILD_DIR}
${RMM_BUILD_DIR}/Debug/rmm.elf
cmake --build ${RMM_BUILD_DIR} -- run-coverage

The above commands will automatically generate the HTML coverage report in folder build/Debug/coverage within
the build directory. The HTML generation can be disabled by setting RMM_HTML_COV_REPORT=OFF.

17. Run CBMC analysis:

Run COVERAGE, ANALYSIS and ASSERT targets for CBMC. The results are generated in ${RMM_BUILD_DIR}/tools/
cbmc/cbmc_coverage_results.

cmake -DRMM_CONFIG=host_defcfg -DHOST_VARIANT=host_cbmc -S ${RMM_SOURCE_DIR} -B ${RMM_
→˓BUILD_DIR}
cmake --build ${RMM_BUILD_DIR} -- cbmc-coverage cbmc-analysis cbmc-assert

18 Chapter 2. Getting Started Guides

Realm Management Monitor

2.14 RMM Build Options

The RMM build system supports the following CMake build options.

Table 2: RMM CMake Options Table
Option Valid values Default Description
RMM_CONFIG Platform build configuration, eg: fvp_defcfg

for the FVP
RMM_ARCH aarch64 |

fake_host
aarch64 Target Architecture for RMM build

RMM_MAX_SIZE 0x0 Maximum size for RMM image
MAX_CPUS 16 Maximum number of CPUs supported by

RMM
GRANULE_SHIFT 12 Granule Shift used by RMM
RMM_CCA_TOKEN_BUFFER 1 Number of pages to allocate in Aux granules

for Realm CCA token
RMM_DOCS ON | OFF OFF RMM Documentation build
CMAKE_BUILD_TYPE Debug | Release Release CMake Build type
CMAKE_CONFIGURATION_TYPESDebug & Release Debug & Re-

lease
Multi-generator configuration types

CMAKE_DEFAULT_BUILD_TYPEDebug | Release Release Default multi-generator configuration type
MbedTLS_BUILD_TYPE Debug | Release Release MbedTLS build type
RMM_PLATFORM fvp | host Platform to build
RMM_TOOLCHAIN gnu | llvm Toolchain name
LOG_LEVEL 0 - 50 40(Debug)

20(Release)
Log level to apply for RMM (0 - 50).

RMM_STATIC_ANALYSIS Enable static analysis checkers
PLAT_CMN_CTX_MAX_XLAT_TABLES 0 Maximum number of translation tables used

by the runtime context
PLAT_CMN_EXTRA_MMAP_REGIONS 0 Extra platform mmap regions that need to be

mapped in S1 xlat tables
PLAT_CMN_VIRT_ADDR_SPACE_WIDTH 38 Stage 1 Virtual address space width in bits for

this platform
RMM_NUM_PAGES_PER_STACK 5 Number of pages to use per CPU stack
MBEDTLS_ECP_MAX_OPS248 - 1000 Number of max operations per ECC signing

iteration
RMM_FPU_USE_AT_REL2ON | OFF OFF(fake_host)

ON(aarch64)
Enable FPU/SIMD usage in RMM.

RMM_MAX_GRANULES 0 Maximum number of memory granules avail-
able to the system

HOST_VARIANT host_build
| host_test |
host_cbmc

host_build Variant to build for the host platform. Only
available when RMM_PLATFORM=host

HOST_MEM_SIZE 0x40000000 Host memory size that will be used as physical
granules

RMM_COVERAGE ON | OFF OFF Enable coverage analysis
RMM_HTML_COV_REPORTON | OFF ON Enable HTML output report for coverage anal-

ysis
RMM_CBMC_VIEWER_OUTPUTON | OFF OFF Generate report of CBMC results using the

tool cbmc-viewer
RMM_CBMC_SINGLE_TESTBENCH OFF Run CBMC on a single testbench instead on

all of them

2.14. RMM Build Options 19

Realm Management Monitor

2.15 RMM LLVM Build

RMM can be built using LLVM Toolchain (Clang). To build using LLVM toolchain, set RMM_TOOLCHAIN=llvm
during configuration stage.

2.16 RMM Fake Host Build

RMM also provides a fake_host target architecture which allows the code to be built natively on the host using the
host toolchain. To build for fake_host architecture, set RMM_CONFIG=host_defcfg during the configuration stage.

20 Chapter 2. Getting Started Guides

CHAPTER

THREE

PROCESS

3.1 Coding Standard

This document describes the coding rules to follow to contribute to the project.

3.1.1 General

The following coding standard is derived from MISRA C:2012 Guidelines, TF-A coding style and Linux kernel coding
style coding standards.

3.1.2 File Encoding

The source code must use the UTF-8 character encoding. Comments and documentation may use non-ASCII characters
when required (e.g. Greek letters used for units) but code itself is still limited to ASCII characters.

3.1.3 Language

The primary language for comments and naming must be International English. In cases where there is a conflict
between the American English and British English spellings of a word, the American English spelling is used.

Exceptions are made when referring directly to something that does not use international style, such as the name of a
company. In these cases the existing name should be used as-is.

3.1.4 C Language Standard

The C language mode used for RMM is GNU11. This is the “GNU dialect of ISO C11”, which implies the ISO C11
standard with GNU extensions.

Both GCC and Clang compilers have support for GNU11 mode, though Clang does lack support for a small number of
GNU extensions. These missing extensions are rarely used, however, and should not pose a problem.

21

https://www.misra.org.uk/Activities/MISRAC/tabid/160/Default.aspx
https://trustedfirmware-a.readthedocs.io/en/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html

Realm Management Monitor

3.1.5 Length

• Each file, function and scopes should have a logical uniting theme.

No length limit is set for a file.

• A function should be 24 lines maximum.

This will not be enforced, any function being longer should trigger a discussion during the review process.

• The recommended maximum line length is 80 characters, except for string literals as it would make any search
for it more difficult. A maximum length of 100 characters is enforced by the coding guidelines static check.

• A variable should not be longer than 31 characters.

Although the C11 specification specifies that the number of signitificant characters in an identifier is implemen-
tation defined it sets the translation limit to the 31 initial characters.

TYPE LIMIT
function 24 lines (not enforced)
line 100 characters
identifier 31 characters

3.1.6 Headers/Footers

• Include guards:

#ifndef FILE_NAME_H
#define FILE_NAME_H

<header content>

#endif /* FILE_NAME_H */

• Include statement variant is <>:

#include <file.h>

• Include files should be alphabetically ordered:

#include <axxxx.h>
#include <bxxxx.h>
[...]
#include <zxxxx.h>

• If possible, use forward declaration of struct types in public headers. This will reduce interdependence of header
file inclusion.

#include <axxxx.h>
#include <bxxxx.h>
[...]
/* forward declaration */
struct x;
void foo(struct *x);

22 Chapter 3. Process

https://en.wikipedia.org/wiki/C11_(C_standard_revision)

Realm Management Monitor

3.1.7 Naming conventions

• Case: Functions and variables must be in Snake Case

unsigned int my_snake_case_variable = 0U;

void my_snake_case_function(void)
{

[...]
}

• Local variables should be declared at the top of the closest opening scope and should be short.

We won’t enforce a length, and defining short is difficult, this motto (from Linux) catches the spirit

LOCAL variable names should be short, and to the point.
If you have some random integer loop counter, it should probably be called i.
Calling it loop_counter is non-productive, if there is no chance of it being mis-understood.
Similarly, tmp can be just about any type of variable that is used to hold a temporary value.
If you are afraid to mix up your local variable names, you have another problem.

int foo(const int a)
{

int c; /* needed in the function */
c = a; /* MISRA-C rules recommend to not modify arguments variables */

if (c == 42) {
int b; /* needed only in this "if" statment */

b = bar(); /* bar will return an int */
if (b != -1) {

c += b;
}

}
return c;

}

• Use an appropraite prefix for public API of a component. For example, if the component name is bar, then the
init API of the component should be called bar_init().

3.1.8 Indentation

Use tabs for indentation. The use of spaces for indentation is forbidden except in the case where a term is being indented
to a boundary that cannot be achieved using tabs alone.

Tab spacing should be set to 8 characters.

Trailing whitespaces or tabulations are not allowed and must be trimmed.

3.1. Coding Standard 23

Realm Management Monitor

3.1.9 Spacing

Single spacing should be used around most operators, including:

• Arithmetic operators (+, -, /, *, %)

• Assignment operators (=, +=, etc)

• Boolean operators (&&, ||)

• Comparison operators (<, >, ==, etc)

• Shift operators (>>, <<)

• Logical operators (&, |, etc)

• Flow control (if, else, switch, while, return, etc)

No spacing should be used around the following operators

• Cast (())

• Indirection (*)

3.1.10 Braces

• Use K&R style for statements.

• Function opening braces are on a new line.

• Use braces even for singled line.

void function(void)
{

/* if statement */
if (my_test) {

do_this();
do_that();

}

/* if/else statement */
if (my_Test) {

do_this();
do_that();

} else {
do_other_this();

}
}

24 Chapter 3. Process

Realm Management Monitor

3.1.11 Commenting

Double-slash style of comments (//) is not allowed, below are examples of correct commenting.

/*
* This example illustrates the first allowed style for multi-line comments.
*
* Blank lines within multi-lines are allowed when they add clarity or when
* they separate multiple contexts.
*/

/**
* This is the second allowed style for multi-line comments.
*
* In this style, the first and last lines use asterisks that run the full
* width of the comment at its widest point.
*
* This style can be used for additional emphasis.
***/

/* Single line comments can use this format */

/***
* This alternative single-line comment style can also be used for emphasis.
**/

3.1.12 Error return values and Exception handling

• Function return type must be explicitly defined.

• Unless specifed otherwise by an official specification, return values must be used to return success or failure
(Standard Posix error codes).

Return an integer if the function is an action or imperative command
Failure: -Exxx (STD posix error codes, unless specified otherwise)

Success: 0

Return a boolean if the function is as predicate
Failure: false

Success: true

• If a function returns error information, then that error information shall be tested.

Exceptions are allowed for STDLIB functions (memcpy/printf/. . .) in which case it must be void casted.

#define MY_TRANSFORMED_ERROR (-1)

void my_print_function(struct my_struct in_mystruct)
{

long long transformed_a = my_transform_a(in_mystruct.a);

if (transform_a != MY_TRANSFORMED_ERROR) {
(void)printf("STRUCT\n\tfield(a): %ll\n", transformed_a);

(continues on next page)

3.1. Coding Standard 25

Realm Management Monitor

(continued from previous page)

} else {
(void)printf("STRUCT\n\tERROR %ll\n", transformed_a);

}
}

3.1.13 Use of asserts and panic

Assertions, as a general rule, are only used to catch errors during development cycles and are removed from production
binaries. They are useful to document pre-conditions for a function or impossible conditions in code. They are not
substitutes for proper error checking and any expression used to test an assertion must not have a side-effect.

For example,

assert(--i == 0);

should not be used in code.

Assertions can be used to validate input arguments to an API as long as the caller and callee are within the same trust
boundary.

panic() is used in places wherein it is not possible to continue the execution of program sensibly. It should be used
sparingly within code and, if possible, instead of panic(), components should return error back to the caller and the
caller can decide on the appropriate action. This is particularly useful to build resilence to the program wherein non-
functional part of the program can be disabled and, if possible, other functional aspects of the program can be kept
running.

3.1.14 Using COMPILER_ASSERT to check for compile time data errors

Where possible, use the COMPILER_ASSERT macro to check the validity of data known at compile time instead of
checking validity at runtime, to avoid unnecessary runtime code.

For example, this can be used to check that the assembler’s and compiler’s views of the size of an array is the same.

#include <utils_def.h>

define MY_STRUCT_SIZE 8 /* Used by assembler source files */

struct my_struct {
uint32_t arg1;
uint32_t arg2;

};

COMPILER_ASSERT(MY_STRUCT_SIZE == sizeof(struct my_struct));

If MY_STRUCT_SIZE in the above example were wrong then the compiler would emit an error like this:

my_struct.h:10:1: note: in expansion of macro 'COMPILER_ASSERT'
10 | COMPILER_ASSERT(MY_STRUCT_SIZE == sizeof(struct my_struct));
| ^~~~~~~~~~~~~~~

26 Chapter 3. Process

Realm Management Monitor

3.1.15 Data types, structures and typedefs

• Data Types:

The RMM codebase should be kept as portable as possible for 64-bits platforms. To help with this, the following data
type usage guidelines should be followed:

• Where possible, use the built-in C data types for variable storage (for example, char, int, long long, etc)
instead of the standard C11 types. Most code is typically only concerned with the minimum size of the data
stored, which the built-in C types guarantee.

• Avoid using the exact-size standard C11 types in general (for example, uint16_t, uint32_t, uint64_t, etc)
since they can prevent the compiler from making optimizations. There are legitimate uses for them, for example
to represent data of a known structure. When using them in a structure definition, consider how padding in the
structure will work across architectures.

• Use int as the default integer type - it’s likely to be the fastest on all systems. Also this can be assumed to be
32-bit as a consequence of the Procedure Call Standard for the Arm 64-bit Architecture .

• Avoid use of short as this may end up being slower than int in some systems. If a variable must be exactly
16-bit, use int16_t or uint16_t.

• long are defined as LP64 (64-bit), this is guaranteed to be 64-bit.

• Use char for storing text. Use uint8_t for storing other 8-bit data.

• Use unsigned for integers that can never be negative (counts, indices, sizes, etc). RMM intends to comply with
MISRA “essential type” coding rules (10.X), where signed and unsigned types are considered different essential
types. Choosing the correct type will aid this. MISRA static analysers will pick up any implicit signed/unsigned
conversions that may lead to unexpected behaviour.

• For pointer types:

– If an argument in a function declaration is pointing to a known type then simply use a pointer to that type
(for example: struct my_struct *).

– If a variable (including an argument in a function declaration) is pointing to a general, memory-mapped
address, an array of pointers or another structure that is likely to require pointer arithmetic then use
uintptr_t. This will reduce the amount of casting required in the code. Avoid using unsigned long or
unsigned long long for this purpose; it may work but is less portable.

– Use of void * is generally discouraged. Although it is useful to represent pointers to types that are ab-
stracted away from the callers and has useful implicit cast properties, for the sake of a more uniform code
base, we encourage use of uintptr_t where possible.

– Avoid pointer arithmetic generally (as this violates MISRA C 2012 rule 18.4) and especially on void pointers
(as this is only supported via language extensions and is considered non-standard). In RMM, setting the
W build flag to W=3 enables the -Wpointer-arith compiler flag and this will emit warnings where pointer
arithmetic is used.

– Use ptrdiff_t to compare the difference between 2 pointers.

• Use size_t when storing the sizeof() something.

• Use ssize_t when returning the sizeof() something from a function that can also return an error code; the
signed type allows for a negative return code in case of error. This practice should be used sparingly.

• Use uint64_t to store the contents of an AArch64 register or represent a 64-bit value. Use of unsigned long
or u_register_t for these purposes is discouraged.

These guidelines should be updated if additional types are needed.

• Typedefs:

3.1. Coding Standard 27

https://developer.arm.com/docs/ihi0055/latest/

Realm Management Monitor

Typedef should be avoided and used only to create opaque types. An opaque data type is one whose concrete data
structure is not publicly defined. Opaque data types can be used on handles to resources that the caller is not expected
to address directly.

/* File main.c */
#include <my_lib.h>

int main(void)
{

context_t *context;
int res;

context = my_lib_init();

res = my_lib_compute(context, "2x2");
if (res == -EMYLIB_ERROR) {

return -1
}

return res;
}

/* File my_lib.h */
#ifndef MY_LIB_H
#define MY_LIB_H

typedef struct my_lib_context {
[...] /* whatever internal private variables you need in my_lib */

} context_t;

#endif /* MY_LIB_H */

3.1.16 Macros and Enums

• Favor functions over macros.

• Preprocessor macros and enums values are written in all uppercase text.

• A numerical value shall be typed.

/* Common C usage */
#define MY_MACRO 4UL

/* If used in C and ASM (included from a .S file) */
#define MY_MACRO UL(4)

• Expressions resulting from the expansion of macro parameters must be enclosed in parentheses.

• A macro parameter immediately following a # operator mustn’t be immediately followed by a ## operator.

#define SINGLE_HASH_OP(x) (#x) /* allowed */
#define SINGLE_DOUBLE_HASH_OP(x, y) (x ## y) /* allowed */
#define MIXED_HASH_OP(x, y) (#x ## y) /* not allowed */

• Avoid defining macros that affect the control flow (i.e. avoid using return/goto in a macro).

28 Chapter 3. Process

Realm Management Monitor

• Macro with multiple statements can be enclosed in a do-while block or in a expression statement.

int foo(char **b);

#define M1(a, b) \
do { \

if ((a) == 5) { \
foo((b)); \

} \
} while (false)

#define M2(a, b) \
({ \
if ((a) == 5) { \

foo((b)); \
} \
})

int foo(char **b)
{

return 42;
}

int main(int ac, char **av)
{

if (ac == 1) {
M1(ac, av);

} else if (ac == 2) {
M2(ac, av);

} else {
return -1;

}

return ac;
}

3.1.17 Switch statements

• Return in a case are allowed.

• Fallthrough are allowed as long as they are commented.

• Do not rely on type promotion between the switch type and the case type.

3.1. Coding Standard 29

Realm Management Monitor

3.1.18 Inline assembly

• Favor C language over assembly language.

• Document all usage of assembly.

• Do not mix C and ASM in the same file.

3.1.19 Libc functions that are banned or to be used with caution

Below is a list of functions that present security risks.

libc function Comments
strcpy, wcscpy, strncpy use strlcpy instead
strcat, wcscat, strncat use strlcat instead
sprintf, vsprintf use snprintf, vsnprintf instead
snprintf if used, ensure result fits in buffer i.e : snprintf(buf,size. . .) < size
vsnprintf if used, inspect va_list match types specified in format string
strtok, strtok_r, strsep Should not be used
ato* Should not be used
*toa Should not be used

The use of above functions are discouraged and will only be allowed in justified cases after a discussion has been held
either on the mailing list or during patch review and it is agreed that no alternative to their use is available. The code
containing the banned APIs must properly justify their usage in the comments.

The above restriction does not apply to Third Party IP code inside the ext/ directory.

3.2 Security Handling

The generic security incident process can be found at TrustedFirmware.org security incident process.

3.3 Commit Style

When writing commit messages, please think carefully about the purpose and scope of the change you are making:
describe briefly what the change does, and describe in detail why it does it. This helps to ensure that changes to the
code-base are transparent and approachable to reviewers, and it allows us to keep a more accurate changelog. You may
use Markdown in commit messages.

A good commit message provides all the background information needed for reviewers to understand the intent and
rationale of the patch. This information is also useful for future reference. For example:

• What does the patch do?

• What motivated it?

• What impact does it have?

• How was it tested?

• Have alternatives been considered? Why did you choose this approach over another one?

30 Chapter 3. Process

https://developer.trustedfirmware.org/w/collaboration/security_center/

Realm Management Monitor

• If it fixes an issue, include a reference.

– Github prescribes a format for issue fixes that can be used within the commit message:

Fixes TF-RMM/tf-rmm#<issue-number>

Commit messages are expected to be of the following form, based on conventional commits:

<type>[optional scope]: <description>

[optional body]

[optional trailer(s)]

The following types are permissible :

Type Description
feat A new feature
fix A bug fix
build Changes that affect the build system or external dependencies
docs Documentation-only changes
perf A code change that improves performance
refactor A code change that neither fixes a bug nor adds a feature
revert Changes that revert a previous change
style Changes that do not affect the meaning of the code (white-space, formatting, missing semi-colons,

etc.)
test Adding missing tests or correcting existing tests
chore Any other change

The permissible scopes are more flexible, and we recommend that they match the directory where the patch applies (or
where the main subject of the patch is, in case of changes accross several directories).

The following example commit message demonstrates the use of the refactor type and the lib/arch scope:

refactor(lib/arch): ...

This change introduces

Change-Id: ...
Signed-off-by: ...

In addition, the width of the commit message must be no more than 72 characters.

3.3.1 Mandated Trailers

Commits are expected to be signed off with the Signed-off-by: trailer using your real name and email address. You
can do this automatically by committing with Git’s -s flag.

There may be multiple Signed-off-by: lines depending on the history of the patch. See License and Copyright for
Contributions for guidance on this.

Ensure that each commit also has a unique Change-Id: line. If you have cloned the repository using the “Clone with
commit-msg hook” clone method, then this should be done automatically for you.

More details may be found in the Gerrit Change-Ids documentation.

3.3. Commit Style 31

https://github.com/TF-RMM/tf-rmm/issues
https://review.trustedfirmware.org/Documentation/user-changeid.html

Realm Management Monitor

3.4 Contributor’s Guide

3.4.1 Getting Started

• Make sure you have a Github account and you are logged on review.trustedfirmware.org.

• Clone RMM on your own machine as described in Getting the RMM Source.

• If you plan to contribute a major piece of work, it is usually a good idea to start a discussion around it on the
mailing list. This gives everyone visibility of what is coming up, you might learn that somebody else is already
working on something similar or the community might be able to provide some early input to help shaping the
design of the feature.

• If you intend to include Third Party IP in your contribution, please mention it explicitly in the email thread and
ensure that the changes that include Third Party IP are made in a separate patch (or patch series).

• Create a local topic branch based on the RMM main branch.

3.4.2 Making Changes

• See the License and Copyright for Contributions section for guidance on license and copyright.

• Ensure commits adhere to the project’s Commit Style.

• Make commits of logical units. See these general Git guidelines for contributing to a project.

• Keep the commits on topic. If you need to fix another bug or make another enhancement, please address it on a
separate topic branch.

• Split the patch into manageable units. Small patches are usually easier to review so this will speed up the review
process.

• Avoid long commit series. If you do have a long series, consider whether some commits should be squashed
together or addressed in a separate topic.

• Follow the Coding Standard.

– Use the static checks as shown in RMM Build Examples to perform checks like checkpatch, checkspdx,
header files include order etc.

• Where appropriate, please update the documentation.

– Consider whether the Design document or other in-source documentation needs updating.

• Ensure that each patch in the patch series compiles in all supported configurations. For generic changes, such as
on the libraries, The RMM Fake host architecture should be able to, at least, build. Patches which do not compile
will not be merged.

• Please test your changes and add suitable tests in the available test frameworks for any new functionality.

• Ensure that all CI automated tests pass. Failures should be fixed. They might block a patch, depending on how
critical they are.

32 Chapter 3. Process

https://review.trustedfirmware.org
https://git.trustedfirmware.org/TF-RMM/tf-rmm.git
https://git.trustedfirmware.org/TF-RMM/tf-rmm.git
http://git-scm.com/book/ch5-2.html

Realm Management Monitor

3.4.3 Submitting Changes

• Assuming the clone of the repo has been done as mentioned in the Getting the RMM Source and origin refers
to the upstream repo, submit your changes for review targeting the integration branch. Create a topic that
describes the target of your changes to help group related patches together.

git push origin HEAD:refs/for/integration [-o topic=<your_topic>]

Refer to the Gerrit Uploading Changes documentation for more details.

• Add reviewers for your patch:

– At least one maintainer. See the list of Maintainers.

– Alternatively, you might send an email to the TF-RMM mailing list to broadcast your review request to the
community.

• The changes will then undergo further review by the designated people. Any review comments will be made
directly on your patch. This may require you to do some rework. For controversial changes, the discussion might
be moved to the TF-RMM mailing list to involve more of the community.

• The patch submission rules are the following. For a patch to be approved and merged in the tree, it must get a
Code-Review+2.

In addition to that, the patch must also get a Verified+1. This is usually set by the Continuous Integration (CI)
bot when all automated tests passed on the patch. Sometimes, some of these automated tests may fail for reasons
unrelated to the patch. In this case, the maintainers might (after analysis of the failures) override the CI bot score
to certify that the patch has been correctly tested.

In the event where the CI system lacks proper tests for a patch, the patch author or a reviewer might agree to
perform additional manual tests in their review and the reviewer incorporates the review of the additional testing
in the Code-Review+1 to attest that the patch works as expected.

• When the changes are accepted, the Maintainers will integrate them.

– Typically, the Maintainers will merge the changes into the integration branch.

– If the changes are not based on a sufficiently-recent commit, or if they cannot be automatically rebased,
then the Maintainers may rebase it on the integration branch or ask you to do so.

– After final integration testing, the changes will make their way into the main branch. If a problem is found
during integration, the Maintainers will request your help to solve the issue. They may revert your patches
and ask you to resubmit a reworked version of them or they may ask you to provide a fix-up patch.

3.4.4 License and Copyright for Contributions

All new files should include the BSD-3-Clause SPDX license identifier where possible. When contributing code to
us, the committer and all authors are required to make the submission under the terms of the Developer Certificate of
Origin, confirming that the code submitted can (legally) become part of the project, and be subject to the same BSD-
3-Clause license. This is done by including the standard Git Signed-off-by: line in every commit message. If more
than one person contributed to the commit, they should also add their own Signed-off-by: line.

Files that entirely consist of contributions to this project should have a copyright notice and BSD-3-Clause SPDX
license identifier of the form :

SPDX-License-Identifier: BSD-3-Clause
SPDX-FileCopyrightText: Copyright TF-RMM Contributors.

3.4. Contributor’s Guide 33

https://review.trustedfirmware.org/Documentation/user-upload.html
https://lists.trustedfirmware.org/mailman3/lists/tf-rmm.lists.trustedfirmware.org/
https://lists.trustedfirmware.org/mailman3/lists/tf-rmm.lists.trustedfirmware.org/

Realm Management Monitor

Patches that contain changes to imported Third Party IP files should retain their original copyright and license notices.
If changes are made to the imported files, then add an additional SPDX-FileCopyrightText tag line as shown above.

34 Chapter 3. Process

CHAPTER

FOUR

DESIGN

4.1 RMM Locking Guidelines

This document outlines the locking requirements, discusses the implementation and provides guidelines for a deadlock
free RMM implementation. Further, the document hitherto is based upon RMM Alpha-05 specification and is expected
to change as the implementation proceeds.

4.1.1 Introduction

In order to meet the requirement for the RMM to be small, simple to reason about, and to co-exist with contemporary
hypervisors which are already designed to manage system memory, the RMM does not include a memory allocator. It
instead relies on an untrusted caller providing granules of memory used to hold both meta data to manage realms as
well as code and data for realms.

To maintain confidentiality and integrity of these granules, the RMM implements memory access controls by maintain-
ing awareness of the state of each granule (aka Granule State, ref Implementation) and enforcing rules on how memory
granules can transition from one state to another and how a granule can be used depending on its state. For example,
all granules that can be accessed by software outside the PAR of a realm are in a specific state, and a granule that holds
meta data for a realm is in another specific state that prevents it from being used as data in a realm and accidentally
corrupted by a realm, which could lead to internal failure in the RMM.

Due to this complex nature of the operations supported by the RMM, for example when managing page tables for realms,
the RMM must be able to hold locks on multiple objects at the same time. It is a well known fact that holding multiple
locks at the same time can easily lead to deadlocking the system, as for example illustrated by the dining philosophers
problem [EWD310]. In traditional operating systems software such issues are avoided by defining a partial order on all
system objects and always acquiring a lower-ordered object before a higher-ordered object. This solution was shown to
be correct by Dijkstra [EWD625]. Solutions are typically obtained by assigning an arbitrary order based upon certain
attributes of the objects, for example by using the memory address of the object.

Unfortunately, software such as the RMM cannot use these methods directly because the RMM receives an opaque
pointer from the untrusted caller and it cannot know before locking the object if it is indeed of the expected state.
Furthermore, MMU page tables are hierarchical data structures and operations on the page tables typically must be
able to locate a leaf node in the hierarchy based on single value (a virtual address) and therefore must walk the page
tables in their hierarchical order. This implies an order of objects in the same Granule State which is not known by
a process executing in the RMM before holding at least one lock on object in the page table hierarchy. An obvious
solution to these problems would be to use a single global lock for the RMM, but that would serialize all operations
across all shared data structures in the system and severely impact performance.

35

Realm Management Monitor

4.1.2 Requirements

To address the synchronization needs of the RMM described above, we must employ locking and lock-free mechanisms
which satisfies a number of properties. These are discussed below:

Critical Section

A critical section can be defined as a section of code within a process that requires access to shared resources and that
must not be executed while another process is in a corresponding section of code [WS2001].

Further, access to shared resources without appropriate synchronization can lead to race conditions, which can be
defined as a situation in which multiple threads or processes read and write a shared item and the final result depends
on the relative timing of their execution [WS2001].

In terms of RMM, an access to a shared resource can be considered as a list of operations/instructions in program order
that either reads from or writes to a shared memory location (e.g. the granule data structure or the memory granule
described by the granule data structure, ref Implementation). It is also understood that this list of operations does not
execute indefinitely, but eventually terminates.

We can now define our desired properties as follows:

Mutual Exclusion

Mutual exclusion can be defined as the requirement that when one process is in a critical section that accesses shared
resources, no other process may be in a critical section that accesses any of those shared resources [WS2001].

The following example illustrates how an implementation might enforce mutual exclusion of critical sections using a
lock on a valid granule data structure struct granule *a:

struct granule *a;
bool r;

r = try_lock(a);
if (!r) {

return -ERROR;
}
critical_section(a);
unlock(a);
other_work();

We note that a process might fail to perform the lock operation on object a and return an error or successfully acquire
the lock, execute the critical_section(), unlock() and then continue to make forward progress to other_work() function.

Deadlock Avoidance

A deadlock can be defined as a situation in which two or more processes are unable to proceed because each is waiting
for one of the others to do something [WS2001].

In other words, one or more processes are trying to enter their critical sections but none of them make forward progress.

We can then define the deadlock avoidance property as the inverse scenario:

When one or more processes are trying to enter their critical sections, at least one of them makes forward progress.

36 Chapter 4. Design

Realm Management Monitor

A deadlock is a fatal event if it occurs in supervisory software such as the RMM. This must be avoided as it can render
the system vulnerable to exploits and/or unresponsive which may lead to data loss, interrupted service and eventually
economic loss.

Starvation Avoidance

Starvation can be defined as a situation in which a runnable process is overlooked indefinitely by the scheduler; although
it is able to proceed, it is never chosen [WS2001].

Then starvation avoidance can be defined as, all processes that are trying to enter their critical sections eventually make
forward progress.

Starvation must be avoided, because if one or more processes do not make forward progress, the PE on which the
process runs will not perform useful work and will be lost to the user, resulting in similar issues like a deadlocked
system.

Nested Critical Sections

A critical section for an object may be nested within the critical section for another object for the same process. In
other words, a process may enter more than one critical section at the same time.

For example, if the RMM needs to copy data from one granule to another granule, and must be sure that both granules
can only be modified by the process itself, it may be implemented in the following way:

struct granule *a;
struct granule *b;
bool r;

r = try_lock(a);
if (!r) {

return -ERROR;
}

/* critical section for granule a -- ENTER */

r = try_lock(b);
if (r) {

/* critical section for granule b -- ENTER */
b->foo = a->foo;
/* critical section for granule b -- EXIT */
unlock(b);

}

/* critical section for granule a -- EXIT */
unlock(a);

4.1. RMM Locking Guidelines 37

Realm Management Monitor

4.1.3 Implementation

The RMM maintains granule states by defining a data structure for each memory granule in the system. Conceptually,
the data structure contains the following fields:

• Granule State

• Lock

• Reference Count

The Lock field provides mutual exclusion of processes executing in their critical sections which may access the shared
granule data structure and the shared meta data which may be stored in the memory granule which is in one of the
RD, REC, and Table states. Both the data structure describing the memory granule and the contents of the memory
granule itself can be accessed by multiple PEs concurrently and we therefore require some concurrency protocol to
avoid corruption of shared data structures. An alternative to using a lock providing mutual exclusion would be to
design all operations that access shared data structures as lock-free algorithms, but due to the complexity of the data
structures and the operation of the RMM we consider this too difficult to accomplish in practice.

The Reference Count field is used to keep track of references between granules. For example, an RD describes a realm,
and a REC describes an execution context within that realm, and therefore an RD must always exist when a REC exists.
To prevent the RMM from destroying an RD while a REC still exists, the RMM holds a reference count on the RD for
each REC associated with the same realm, and only when the all the RECs in a realm have been destroyed and the
reference count on an RD drops to zero, can the RD be destroyed and the granule be repurposed for other use.

Based on the above, we now describe the Granule State field and the current locking/refcount implementation:

• UnDelegated: These are granules for which RMM does not prevent the PAS of the granule from being changed
by another agent to any value. In this state, the granule content access is not protected by granule::lock, as it is
always subject to reads and writes from Non-Realm worlds.

• Delegated: These are granules with memory only accessible by the RMM. The granule content is protected by
granule::lock. No reference counts are held on this granule state.

• Realm Descriptor (RD): These are granules containing meta data describing a realm, and only accessible by
the RMM. Granule content access is protected by granule::lock. A reference count is also held on this granule
for each associated REC granule.

• Realm Execution Context (REC): These are granules containing meta data describing a virtual PE running in
a realm, and are only accessible by the RMM. The execution content access is not protected by granule::lock,
because we cannot enter a realm while holding the lock. Further, the following rules apply with respect to the
granule’s reference counts:

– A reference count is held on this granule when a REC is running.

– As REC cannot be run on two PEs at the same time, the maximum value of the reference count is one.

– When the REC is entered, the reference count is incremented (set to 1) atomically while granule::lock is
held.

– When the REC exits, the reference counter is released (set to 0) atomically with store-release semantics
without granule::lock being held.

– The RMM can access the granule’s content on the entry and exit path from the REC while the reference is
held.

• Translation Table: These are granules containing meta data describing virtual to physical address translation
for the realm, accessible by the RMM and the hardware Memory Management Unit (MMU). Granule content
access is protected by granule::lock, but hardware translation table walks may read the RTT at any point in time.
Multiple granules in this state can only be locked at the same time if they are part of the same tree, and only in
topological order from root to leaf. The topological order of concatenated root level RTTs is from the lowest

38 Chapter 4. Design

Realm Management Monitor

address to the highest address. The complete internal locking order for RTT granules is: RD -> [RTT] -> . . . ->
RTT. A reference count is held on this granule for each entry in the RTT that refers to a granule:

– Table s2tte.

– Valid s2tte.

– Valid_NS s2tte.

– Assigned s2tte.

• Data: These are granules containing realm data, accessible by the RMM and by the realm to which it belongs.
Granule content access is not protected by granule::lock, as it is always subject to reads and writes from within
a realm. A granule in this state is always referenced from exactly one entry in an RTT granule which must be
locked before locking this granule. Only a single DATA granule can be locked at a time on a given PE. The
complete internal locking order for DATA granules is: RD -> RTT -> RTT -> . . . -> DATA. No reference counts
are held on this granule type.

Locking

The RMM uses spinlocks along with the object state for locking implementation. The lock provides similar exclusive
acquire semantics known from trivial spinlock implementations, however also allows verification of whether the locked
object is of an expected state.

The data structure for the spinlock can be described in C as follows:

typedef struct {
unsigned int val;

} spinlock_t;

This data structure can be embedded in any object that requires synchronization of access, such as the struct granule
described above.

The following operations are defined on spinlocks:

Listing 1: Typical spinlock operations

/*
* Locks a spinlock with acquire memory ordering semantics or goes into
* a tight loop (spins) and repeatedly checks the lock variable
* atomically until it becomes available.
*/
void spinlock_acquire(spinlock_t *l);

/*
* Unlocks a spinlock with release memory ordering semantics. Must only
* be called if the calling PE already holds the lock.
*/
void spinlock_release(spinlock_t *l);

The above functions should not be directly used for locking/unlocking granules, instead the following should be used:

Listing 2: Granule locking operations

/*
* Acquires a lock (or spins until the lock is available), then checks
* if the granule is in the `expected_state`. If the `expected_state`

(continues on next page)

4.1. RMM Locking Guidelines 39

Realm Management Monitor

(continued from previous page)

* is matched, then returns `true`. Otherwise, releases the lock and
* returns `false`.
*/
bool granule_lock_on_state_match(struct granule *g,

enum granule_state expected_state);

/*
* Used when we're certain of the state of an object (e.g. because we
* hold a reference to it) or when locking objects whose reference is
* obtained from another object, after that objects is locked.
*/
void granule_lock(struct granule *g,

enum granule_state expected_state);

/*
* Obtains a pointer to a locked granule at `addr` if `addr` is a valid
* granule physical address and the state of the granule at `addr` is
* `expected_state`.
*/
struct granule *find_lock_granule(unsigned long addr,

enum granule_state expected_state);

/* Find two granules and lock them in order of their address. */
return_code_t find_lock_two_granules(unsigned long addr1,

enum granule_state expected_state1,
struct granule **g1,
unsigned long addr2,
enum granule_state expected_state2,
struct granule **g2);

/*
* Obtain a pointer to a locked granule at `addr` which is unused
* (refcount = 0), if `addr` is a valid granule physical address and the
* state of the granule at `addr` is `expected_state`.
*/
struct granule *find_lock_unused_granule(unsigned long addr,

enum granule_state
expected_state);

Listing 3: Granule unlocking operations

/*
* Release a spinlock held on a granule. Must only be called if the
* calling PE already holds the lock.
*/
void granule_unlock(struct granule *g);

/*
* Sets the state and releases a spinlock held on a granule. Must only
* be called if the calling PE already holds the lock.
*/
void granule_unlock_transition(struct granule *g,

(continues on next page)

40 Chapter 4. Design

Realm Management Monitor

(continued from previous page)

enum granule_state new_state);

Reference Counting

The reference count is implemented using the refcount variable within the granule structure to keep track of the ref-
erences in between granules. For example, the refcount is used to prevent changes to the attributes of a parent granule
which is referenced by child granules, ie. a parent with refcount not equal to zero.

Race conditions on the refcount variable are avoided by either locking the granule before accessing the vari-
able or by lock-free mechanisms such as Single-Copy Atomic operations along with ARM weakly ordered AC-
QUIRE/RELEASE/RELAXED memory semantics to synchronize shared resources.

The following operations are defined on refcount:

Listing 4: Read a refcount value

/*
* Single-copy atomic read of refcount variable with RELAXED memory
* ordering semantics. Use this function if lock-free access to the
* refcount is required with relaxed memory ordering constraints applied
* at that point.
*/
unsigned long granule_refcount_read_relaxed(struct granule *g);

/*
* Single-copy atomic read of refcount variable with ACQUIRE memory
* ordering semantics. Use this function if lock-free access to the
* refcount is required with acquire memory ordering constraints applied
* at that point.
*/
unsigned long granule_refcount_read_acquire(struct granule *g);

Listing 5: Increment a refcount value

/*
* Increments the granule refcount. Must be called with the granule
* lock held.
*/
void __granule_get(struct granule *g);

/*
* Increments the granule refcount by `val`. Must be called with the
* granule lock held.
*/
void __granule_refcount_inc(struct granule *g, unsigned long val);

/* Atomically increments the reference counter of the granule.*/
void atomic_granule_get(struct granule *g);

4.1. RMM Locking Guidelines 41

Realm Management Monitor

Listing 6: Decrement a refcount value

/*
* Decrements the granule refcount. Must be called with the granule
* lock held.
*/
void __granule_put(struct granule *g);

/*
* Decrements the granule refcount by `val`. Asserts if refcount can
* become negative. Must be called with the granule lock held.
*/
void __granule_refcount_dec(struct granule *g, unsigned long val);

/* Atomically decrements the reference counter of the granule. */
void atomic_granule_put(struct granule *g);

/*
* Atomically decrements the reference counter of the granule. Stores to
* memory with RELEASE semantics.
*/
void atomic_granule_put_release(struct granule *g);

Listing 7: Directly access refcount value

/*
* Directly reads/writes the refcount variable. Must be called with the
* granule lock held.
*/
granule->refcount;

4.1.4 Guidelines

In order to meet the Requirements discussed above, this section stipulates some locking and lock-free algorithm imple-
mentation guidelines for developers.

Mutual Exclusion

The spinlock, acquire/release and atomic operations provide trivial mutual exclusion implementations for RMM. How-
ever, the following general guidelines should be taken into consideration:

• Appropriate deadlock avoidance techniques should be incorporated when using multiple locks.

• Lock-free access to shared resources should be atomic.

• Memory ordering constraints should be used prudently to avoid performance degradation. For e.g. on an un-
locked granule (e.g. REC), prior to the refcount update, if there are associated memory operations, then the
update should be done with release semantics. However, if there are no associated memory accesses to the
granule prior to the refcount update then release semantics will not be required.

42 Chapter 4. Design

Realm Management Monitor

Deadlock Avoidance

Deadlock avoidance is provided by defining a partial order on all objects in the system where the locking operation
will eventually fail if the caller tries to acquire a lock of a different state object than expected. This means that no two
processes will be expected to acquire locks in a different order than the defined partial order, and we can rely on the
same reasoning for deadlock avoidance as shown by Dijkstra [EWD625].

To establish this partial order, the objects referenced by RMM can be classified into two categories:

1. External: A granule state belongs to the external class iff _any_ parameter in _any_ RMI command is an address
of a granule which is expected to be in that state. The following granule states are external:

• GRANULE_STATE_NS

• GRANULE_STATE_DELEGATED

• GRANULE_STATE_RD

• GRANULE_STATE_REC

2. Internal: A granule state belongs to the internal class iff it is not an external. These are objects which are
referenced from another object after that object is locked. Each internal object should be referenced from exactly
one place. The following granule states are internal:

• GRANULE_STATE_RTT

• GRANULE_STATE_DATA

We now state the locking guidelines for RMM as:

1. Granules expected to be in an external state must be locked before locking any granules in an internal state.

2. Granules expected to be in an external state must be locked in order of their physical address, starting with the
lowest address.

3. Once a granule expected to be in an external state has been locked, its state must be checked against the expected
state. If these do not match, the granule must be unlocked and no further granules may be locked within the
currently-executing RMM command.

4. Granules in an internal state must be locked in order of state:

• RTT

• DATA

5. Granules in the same internal state must be locked in the Implementation defined order for that specific state.

6. A granule’s state can be changed iff the granule is locked and the reference count is zero.

Starvation Avoidance

Currently, the lock-free implementation for RMI.REC.Enter provides Starvation Avoidance in RMM. However, for the
locking implementation, Starvation Avoidance is yet to be accomplished. This can be added by a ticket or MCS style
locking implementation [MCS].

4.1. RMM Locking Guidelines 43

Realm Management Monitor

Nested Critical Sections

Spinlocks provide support for nested critical sections. Processes can acquire multiple spinlocks at the same time, as
long as the locking order is not violated.

4.1.5 References

4.2 MMU setup and memory management design in RMM

This document describes how the MMU is setup and how memory is managed by the RMM implementation.

4.2.1 Physical Address Space

The Realm Management Extension (FEAT_RME) defines four Physical Address Spaces (PAS):

• Non-secure

• Secure

• Realm

• Root

RMM code and RMM data are in Realm PAS memory, loaded and allocated to Realm PAS at boot time by the EL3
Firmware. This is a static carveout and it is never changed during the lifetime of the system.

The size of the RMM data is fixed at build time. The majority of this is the granules array (see Granule state tracking
below), whose size is configurable and proportional to the maximum amount of delegable DRAM supported by the
system.

Realm data and metadata are in Realm PAS memory, which is delegated to the Realm PAS by the Host at runtime. The
RMM ABI ensures that this memory cannot be returned to Non-secure PAS (“undelegated”) while it is in use by the
RMM or by a Realm.

NS data is in Non-secure PAS memory. The Host is able to change the PAS of this memory while it is being accessed
by the RMM. Consequently, the RMM must be able to handle a Granule Protection Fault (GPF) while accessing NS
data as part of RMI handling.

4.2.2 Granule state tracking

The RMM manages a data structure called the granules array, which is stored in RMM data memory.

The granules array contains one entry for every Granule of physical memory which was in Non-secure PAS at RMM
boot and can be delegated.

Each entry in the granules array contains a field granule_state which records the state of the Granule and which can
be one of the states as listed below:

• NS: Not Realm PAS (i.e. Non-secure PAS, Root PAS or Secure PAS)

• Delegated: Realm PAS, but not yet assigned a purpose as either Realm data or Realm metadata

• RD: Realm Descriptor

• REC: Realm Execution Context

• REC aux: Auxiliary storage for REC

44 Chapter 4. Design

Realm Management Monitor

• Data: Realm data

• RTT: Realm Stage 2 translation tables

As part of RMI SMC handling, the state of the granule can be a pre-condition and undergo transition to a new state.
For more details on the various granule states and their transitions, please refer to the Realm Management Monitor
(RMM) Specification.

For further details, see:

• enum granule_state

• struct granule

4.2.3 RMM stage 1 translation regime

RMM uses the FEAT_VHE extension to split the 64-bit VA space into two address spaces as shown in the figure below:

• The Low VA range: it expands from VA 0x0 up to the maximum VA size configured for the region (with a
maximum VA size of 48 bits or 52 bits if FEAT_LPA2 is supported). This range is used to map the RMM Runtime
(code, data, shared memory with EL3-FW and any other platform mappings).

• The High VA range: It expands from VA 0xFFFF_FFFF_FFFF_FFFF all the way down to an address corre-
sponding to the maximum VA size configured for the region. This region is used by the Stage 1 High VA - Slot

4.2. MMU setup and memory management design in RMM 45

https://developer.arm.com/documentation/den0137/1-0eac5/?lang=en
https://developer.arm.com/documentation/den0137/1-0eac5/?lang=en

Realm Management Monitor

Buffer mechanism as well as the Per-CPU stack mapping.

There is a range of invalid addresses between both ranges that is not mapped to any of them as shown in the figure
above. TCR_EL2.TxSZ fields controls the maximum VA size of each region and RMM configures this field to fit the
mappings used for each region.

The 2 VA ranges are used for 2 different purposes in RMM as described below.

Stage 1 Low VA range

The Low VA range is used to create static mappings which are shared across all the CPUs. It encompasses the RMM
executable binary memory and the EL3 Shared memory region.

The RMM Executable binary memory consists of code, RO data and RW data. Note that the stage 1 translation tables
for the Low Region are kept in RO data, so that once the MMU is enabled, the tables mappings are protected from
further modification.

The EL3 shared memory, which is allocated by the EL3 Firmware, is used by the RMM-EL3 communications interface.
A pointer to the beginning of this area is received by RMM during initialization. RMM will then map the region in the
.rw area.

The Low VA range is setup by the platform layer as part of platform initialization.

The following mappings belong to the Low VA Range:

• RMM_CODE

• RMM_RO

• RMM_RW

• RMM_SHARED

Per-platform mappings can also be added if needed, such as the UART for the FVP platform.

Stage 1 High VA range

The High VA range is used to create dynamic per-CPU mappings. The tables used for this are private to each CPU
and hence it is possible for every CPU to map a different PA at a specific VA. This property is used by the slot-buffer
mechanism as described later.

In order to allow the mappings for this region to be dynamic, its translation tables are stored in the RW section of RMM,
allowing for it to be modified as needed.

For more details see xlat_high_va.c file of the xlat library.

The diagram below shows the memory layout for the High VA region.

46 Chapter 4. Design

https://trustedfirmware-a.readthedocs.io/en/latest/components/rmm-el3-comms-spec.html

Realm Management Monitor

Stage 1 High VA - Slot Buffer mechanism

The RMM provides a dynamic mapping mechanism called slot-buffer in the high VA region. The assigned VA space
for slot-buffer is divided into slots of GRANULE_SIZE each.

The RMM has a fixed number of slots per CPU. Each slot is used to map memory of a particular category. The RMM
validates that the target physical granule to be mapped is of the expected granule_state by looking up the corresponding
entry in granules array.

The slot-buffer mechanism has slots for mapping memory of the following types:

• Realm metadata: These correspond to the specific Realm and Realm Execution context scheduled on the PE.
These mappings are usually only valid during the execution of an RMI or RSI handlers and are removed after-
wards. These include Realm Descriptors (RDs), Realm Execution Contexts (RECs), Realm Translation Tables
(RTTs).

4.2. MMU setup and memory management design in RMM 47

Realm Management Monitor

• NS data: RMM needs to map NS memory as part of RMIs to access parameters passed by the Host or to return
arguments to the Host. RMM also needs to copy Data provided by the Host as part of populating the Realm data
memory.

• Realm data: RMM sometimes needs to temporarily map Realm data memory during Realm creation in order to
load the Realm image or access buffers specified by the Realm as part of RSI commends.

The slot-buffer design avoids the need for generic allocation of VA space. The rationalization of all mappings ever
needed for managing a realm via slots is only possible due to the simple nature of the RMM design - in particular, the
fact that it is possible to statically determine the types of objects which need to be mapped into the RMM’s address
space, and the maximum number of objects of a given type which need to be mapped at any point in time.

During Realm entry and Realm exit, the RD is mapped in the “RD” buffer slot. Once Realm entry or Realm exit is
complete, this mapping is removed. The RD is not mapped during Realm execution.

The REC and the rmi_rec_run data structures are both mapped during Realm execution.

As the slots are mapped on the High VA region, each CPU has its own private translation tables for such mappings,
which means that a particular slot has a fixed VA on every CPU. Since the Translation tables are private to a CPU,
the mapping to the slot is private to the CPU. This allows the interruption and migration of a REC (vCPU) to another
CPU with live memory allocations in RMM. An example of this scenario is when the Realm attestation token is being
created in RMM, a pending IRQ can cause RMM to yield to NS Host with live memory allocations in MbedTLS heap.
The NS Host can schedule the REC on another CPU and, since the mapping for the memory allocations remain at the
same VA, the interrupted realm token creation can continue.

The slot-buffer implementation in RMM also has some performance optimizations like caching of TTE’s to avoid
walking the Stage 1 translation tables for every map and unmap operation.

As an alternative to using dynamic mappings as required for the RMI command, the approach of maintaining static
mappings for all physical memory was considered, but rejected on the grounds that this could permit arbitrary memory
access for an attacker who is able to subvert RMM execution.

The xlat lib APIs are used by the slot-buffer to create dynamic mappings. These dynamic mappings are stored in the
high VA region’s xlat_ctx structure and marked by the xlat library as TRANSIENT. This helps xlat lib to distinguish
valid Translation Table Entries from invalid ones as otherwise the unmapped dynamic TTEs would be identical to
INVALID ones.

For further details, see:

• enum buffer_slot

• lib/realm/src/buffer.c

Per-CPU stack mapping

Each CPU maps its stack to the High VA region which means that the stack has same VA on all the CPUs and it is
private to the CPU. At boot time, each CPU calculates the PA for the start of the stack and maps it to the designated
High VA address space.

The per-CPU VA mapping also includes a gap at the end of the stack VA to detect any stack underflows. The gap has
a page size.

RMM also uses a separate Per-CPU stack to handle exceptions and faults. This stack is allocated below the general one,
and it allows for RMM to be able to handle a stack overflow fault. There is another page gap of unmapped memory
between both stacks to harden security.

The rest of the VA space available below the exception stack is unused and therefore left unmapped. The stage 1
translation library will not allow to map anything there.

48 Chapter 4. Design

Realm Management Monitor

4.2.4 Stage 1 translation library (xlat library)

The RMM stage 1 translation management is taken care of by the xlat library. This library is able to support up to 52-bit
addresses and 5 levels of translation (when FEAT_LPA2 is enabled).

The xlat library is designed to be stateless and it uses the abstraction of translation context, modelled through the
struct xlat_ctx. A translation context stores all the information related to a given VA space, such as the translation
tables, the VA configuration used to initialize the context and any internal status related to such VA. Once a context has
been initialized, its VA configuration cannot be modified.

At the moment, although the xlat library supports creation of multiple contexts, it assumes that the caller will only use
a single context per CPU for a given VA region. The library does not offer support to switch contexts on a CPU at run
time. A context can be shared by several CPUs if they share the same VA configuration and mappings, like on the low
va region.

Dynamic mappings can be created by specifying the TRANSIENT flag. The high VA region create dynamic mappings
using this flag.

For further details, see lib/xlat.

4.2.5 RMM executable bootstrap

The RMM is loaded as a .bin file by the EL3 loader. The size of the sections in the RMM binary as well as the placing
of RMM code and data into appropriate sections is controlled by the linker script in the source tree.

Platform initialization code takes care of importing the linker symbols that define the boundaries of the different sections
and creates static memory mappings that are then used to initialize an xlat_ctx structure for the low VA region.
The RMM binary sections are flat-mapped and are shared across all the CPUs on the system. In addition, as RMM
is compiled as a Position Independent Executable (PIE) at address 0x0, the Global Offset Table (GOT) and other
relocations in the binary are fixed up with the right offsets as part of boot. This allows RMM to be run at any physical
address as a PIE regardless of the compile time address.

For further details, see:

• runtime/linker.lds

• plat/common/src/plat_common_init.c

• plat/fvp/src/fvp_setup.c

4.3 RMM Folder and Component organization

4.3.1 Root Level Folders and Components

The root level folder structure of the RMM project is as given below.

cmake
configs
docs
drivers
ext
lib
plat

(continues on next page)

4.3. RMM Folder and Component organization 49

Realm Management Monitor

(continued from previous page)

runtime
toolchains
tools

The RMM functionality is implemented by files in lib, ext, drivers, plat and runtime. Each of these folders corresponds
to a component in the project. Every component has a defined role in implementing the RMM functionality and can
in-turn be composed of sub-components of the same role. The components have their own CMakelists.txt file and a
defined public API which is exported via the public interface of the component to its dependent users. The runtime
component is an exception as it does not have a public API.

The dependency relationship between the top level components is shown below :

Each component and its role is described below :

• lib : This component is a library of re-usable and architectural code which needs to be used by other compo-
nents. The lib component is composed of several sub-components and every sub-component has a public API
which is exported via its public interface. The functionality implemented by the sub-component is not platform
specific although there could be specific static configuration or platform specific data provided via defined public
interface. All of the sub-components in lib are combined into a single archive file which is then included in the
build.

The lib component depends on ext and plat components. All other components in the project depend on lib.

• ext : This component is meant for external source dependencies of the project. The sub folders are external open
source projects configured as git submodules. The ext component is only allowed to depend on libc implemen-
tation in lib component.

• plat : This component implements the platform abstraction layer or platform layer for short. The platform layer
has the following responsibilities:

1. Implement the platform porting API as defined in platform_api.h.

2. Do any necessary platform specific initialization in the platform layer.

3. Initialize lib sub-components with platform specific data.

4. Include any platform specific drivers from the drivers folder and initialize them as necessary.

Every platform or a family of related platforms is expected to have a folder in plat and only one such folder
corresponding to the platform will be included in the build. The plat component depends on lib and any platform

50 Chapter 4. Design

Realm Management Monitor

specific drivers in drivers.

• drivers : The platform specific drivers are implemented in this component. Only the plat component is allowed
to access these drivers via its public interface.

• runtime : This component implements generic RMM functionality which does not need to be shared across
different components. The runtime component does not have a public interface and is not a dependency for any
other component. The runtime is compiled into the binary rmm.img after linking with other components in the
build.

4.3.2 Component File and Cmake Structure

The below figure shows the folder organization of a typical component (or sub-component)

component x
include

| public.h
src

| private_a.h
| src_a.c

tests
| test.cpp

CMakeLists.txt

The include folder contains the headers exposing the public API of the component. The src contains the private
headers and implementation of the intended functionality. The tests contains the tests for the component and the
CMakeLists.txt defines the build and inheritance rules.

A typical component CMakeLists.txt has the following structure :

add_library(comp-x)

Define any static config option for this component.
arm_config_option()

Pass the config option to the source files as a compile
option.
target_compile_definitions()

Specify any private dependencies of the component. These are not
inherited by child dependencies.
target_link_libraries(comp-x

PRIVATE xxx)

Specify any private dependencies of the component. These are
inherited by child dependencies and are usually included in
public API header of the component.
target_link_libraries(comp-x

PUBLIC yyy)

Export public API via public interface of this component
target_include_directories(comp-x

PUBLIC "include")

(continues on next page)

4.3. RMM Folder and Component organization 51

Realm Management Monitor

(continued from previous page)

Specify any private headers to be included for compilation
of this component.
target_include_directories(comp-x

PRIVATE "src")

Specify source files for component
target_sources(comp-x

PRIVATE xxx)

4.4 RMM Fake host architecture

RMM supports building and running the program natively as a regular user-space application on the host machine. It
achieves this by emulating the aarch64 specific parts of the program on the host machine by suitable hooks in the
program. The implementation of the hooks can differ based on the target employment of running the program in this
mode. Some of the foreseen employment scenarios of this architecture includes:

1. Facilitate development of architecture independent parts of RMM on the host machine.

2. Enable unit testing of components within RMM with the benefit of not having to mock all the dependencies of
the component.

3. Leverage host development environment and tools for various purposes like debugging, measure code coverage,
fuzz testing, stress testing, runtime analysis of program etc.

4. Enable RMM compliance testing and verification of state machine and locking rules on the host machine.

5. Profile RMM on the host machine and generate useful insights for possible optimizations.

We expect the fake host architecture to be developed over time in future to cover some of the employment scenarios
described above. The current code may not reflect the full scope of this architecture as discussed in this document.

The fake host architecture has some limitations:

1. The architecture is not intended to support multi-thread execution. The intrisics to support critical section and
atomics are emulated as NOP.

2. Cannot execute AArch64 assembly code on the host due to obvious reasons.

3. Cannot emulate AArch64 exceptions during RMM execution although some limited form of handling exceptions
occurring in Realms can probably be emulated.

4. The program links against the native compiler libraries which enables use of development and debug features
available on the host machine. This means the libc implementation in RMM cannot be verified using this archi-
tecture.

The fake host architecture config is selected by setting the config RMM_ARCH=fake_host and the platform has to be
set to a variant of host when building RMM. The different variants of the host platform allow to build RMM for each
of the target employment scenarios as listed above.

52 Chapter 4. Design

Realm Management Monitor

4.4.1 Fake host architecture design

The above figure shows the fake host architecture design. The architecture independent parts of RMM are linked against
suitable host emulation blocks to enable the program to run on the host platform.

The EL3 (monitor) emulation layer emulates the entry and exception from EL3 into Realm-EL2. This includes entry
and exit from RMM as part of RMI handling, entry into RMM as part of warm/cold boot, and EL3 service invocations
by RMM using SMC calls. Similarly the Realm entry/exit emulation block allows emulation of running a Realm. It
would also allow to emulate exit from Realm due to synchronous or asynchronous exceptions like SMC calls, IRQs,
etc.

The hardware emulation block allows to emulate sysreg accesses, granule memory delegation and NS memory accesses
needed for RMM. Since RMM is running as a user space application, it does not have the ability to map granule memory
to a Virtual Address space. This capability is needed for the slot buffer component in RMM. Hence there is also
need to emulate VA mapping for this case.

The AArch64 intrinsics emulation block allows emulation of exclusives, assembly instructions for various architecture
extensions, barriers and atomics, cache and TLB operations although most of them are defined as NOP at the moment.

Within the RMM source tree, all files within the fake_host folder of each component implement the necessary emu-
lation on host. Depending on the target employment for the fake host architecture, it is necessary to adapt the behaviour
of the emulation layer. This is facilitated by the APIs defined in host_harness.h header. The implementation of
the API is done by the host platform and each variant of the host can have a different implementation of the API
suiting its target employment. The API also facilitates test and verification of the emulated property as needed by the
employment.

4.4. RMM Fake host architecture 53

Realm Management Monitor

4.4.2 Fake host architecture employment scenarios implemented or ongoing

This section describes the currently implemented scenarios utilizing the fake host architecture.

1. Unit testing framework in RMM which allows testing public API of components and generation of code coverage
data.

4.5 RMM Cold and Warm boot design

This section covers the boot design of RMM. The below diagram gives an overview of the boot flow.

54 Chapter 4. Design

Realm Management Monitor

4.5. RMM Cold and Warm boot design 55

Realm Management Monitor

Both warm and cold boot enters RMM at the same entry point rmm_entry(). This scheme simplifies the RMM-EL3
communications interface. The boot args as specified by boot contract are stashed to high registers.

The boot is divided into several phases as described below:

1. Sysreg and C runtime initialization phase.

The essential system registers are initialized. SCTLR_EL2.I is set to 1 which means instruction accesses
to Normal memory are Outer Shareable, Inner Write-Through cacheable, Outer Write-Through cacheable.
SCTLR_EL2.C is also set 1 and data accesses default to Device-nGnRnE. The cpu-id, received as part of boot
args, is programmed to tpidr_el2 and this can be retrieved using the helper function my_cpuid(). The per-
CPU stack is also initialized using the cpu-id received and this completes the C runtime initialization for warm
boot.

Only the primary CPU enters RMM during cold boot and a global variable is used to keep track whether it is
cold or warm boot. If cold boot, the Global Descriptor Table (GDT) and Relocations are fixed up so that RMM
can run as position independent executable (PIE). The BSS is zero initialized which completes the C runtime
initialization for cold boot.

2. Platform initialization phase

The boot args are restored to their original registers and plat_setup() and plat_warmboot_setup() are invoked for
cold and warm boot respectively. During cold boot, the platform is expected to consume the boot manifest which
is part of the RMM-EL3 communications interface. The platform initializes any platform specific peripherals
and also intializes and configures the translation table contexts for Stage 1.

3. MMU enable phase

The EL2&0 translation regime is enabled after suitable TLB and cache invalidations.

4. PAuth enable phase

Disable API, APK Trap, to allow PAuth instructions access from Realm without trapping. Initialize APIA Keys
to random 128-bit value, Enable PAuth for R-EL2.

5. RMM Main phase

Any cold boot or warm initialization of RMM components is done in this phase. This phase also involves invoking
suitable EL3 services, like acquiring platform attestation token for Realm attestation.

After all the phases have completed successfully, RMM issues RMM_BOOT_COMPLETE SMC. The next entry into RMM
from EL3 would be for handling RMI calls and hence the next intruction following the SMC call branches to the main
SMC handler routine.

4.6 RMM-EL3 communication specification

The communication interface between RMM and EL3 is specified in RMM-EL3 communications interface specifica-
tion in the TF-A repository.

56 Chapter 4. Design

https://trustedfirmware-a.readthedocs.io/en/latest/components/rmm-el3-comms-spec.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/rmm-el3-comms-spec.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/rmm-el3-comms-spec.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/rmm-el3-comms-spec.html

CHAPTER

FIVE

SECURITY

5.1 Threat Model

5.1.1 Introduction

Threat modeling is an important part of Secure Development Lifecycle (SDL) that helps us identify potential threats
and mitigations affecting a system.

In the next sections, we present the Threat Model for RMM, giving first a description of the target of evaluation using a
data flow diagram. Then we provide a list of threats that we have identified based on the data flow diagram and potential
threat mitigations.

5.1.2 Data Flow Diagram

This section describes the Data Flow Diagram for RMM.

Target of Evaluation

In this threat model, the target of evaluation is the Realm Management Monitor (RMM) in a system context for an Arm
A-Class CPU with Realm Management Extension, as shown on Figure 1. Everything else on Figure 1 is outside of the
scope of the evaluation.

RMM can be configured in various ways. In this threat model we consider only the most basic configuration. To that
end we make the following assumptions:

• RMM image is run from either ROM, on-chip trusted SRAM or off-chip DRAM. Any memory shared with EL3
Firmware is located inside on-chip trusted SRAM. If RMM runs from off-chip DRAM, then RMM is vulnerable
to DRAM attacks (such as rowhammer) and attacks which can probe and tamper off-chip memory.

• No experimental features are enabled. We do not consider threats that may come from them.

• RME hardware threats and threats covered by the RMM ABI will be covered in a dedicated Security Risk Analysis
document (to be published in the future). Although there is some overlap with threats mitigated by RME hardware
and RMM ABI, this threat model focuses on covering threats specific to the RMM implementation and associated
data flows.

57

Realm Management Monitor

Data Flow Diagram

Figure 1 shows a high-level data flow diagram for RMM. The diagram shows a model of the different components of a
RMM system and their interactions with other FW/SW components. A description of each diagram element is given
in Table 1. In the diagram, the red broken lines indicate trust boundaries. Components outside of the broken lines are
considered untrusted by RMM. Components inside the broken lines must be trusted by RMM, as they provide security
foundations for its functionality.

58 Chapter 5. Security

Realm Management Monitor

Table 1: Table 1: RMM Data Flow Diagram Description
Diagram Element Description
DF1

At boot time, EL3 Firmware configures RMM through
parameters stored in registers x0 to x3. It also
passes a Boot Manifest using secure shared memory.

DF2

RMM log system framework outputs debug messages
over a UART interface.

DF3

Debug and trace IP on a platform can allow access to
registers and memory of RMM.

DF4

Interface for RMM-EL3 communication as per
documented in RMM-EL3 Runtime Interface. RMM
trusts EL3,
which is part of a trusted subsystem.

DF5

Realm software can interact with RMM to request
services through the RSI (Realm Service Interface).
This also includes the PSCI interface.

DF6

Regardless of the type of memory from where RMM is
executed, off-chip dynamic RAM (considered
Non-Secure) may be used to store large data structures.
This memory might be subject to different
attacks.

DF7

NS Host interacts with RMM by issuing SMCs that are
then forwarded from EL3 Firmware to RMM.

DF8

This path represents the interaction between RMM and
various hardware IPs such as MMU controller and GIC.
At boot time, RMM configures/initializes the IPs and
interacts with them at runtime through interrupts
and registers.

5.1. Threat Model 59

https://trustedfirmware-a.readthedocs.io/en/latest/components/rmm-el3-comms-spec.html#rmm-el3-runtime-interface

Realm Management Monitor

5.1.3 Threat Analysis components

In this section we identify all the possible actors involved in the Threat Model.

For each threat, we will identify the asset that is under threat, the threat agent and the threat type. Each threat will be
given a risk rating that represents the impact and likelihood of that threat.

Any threat which needs to be mitigated by the RME hardware as well as by EL3 Root code is out of the scope of this
Threat Model.

Assets

We have identified the following assets for RMM:

Table 2: Table 2: RMM Assets
Asset Description
Sensitive Data

These include sensitive RMM and Realm data that an
attacker must not be able to tamper with.
Also, RMM should protect the confidentiality of of
such data.

Code Execution

This represents the requirement that Realms should
only run code in R-EL1/EL0 that is
allowed by the RMM ABI. The Realm code execution
cannot be hijacked by an attacker.
This also represents the requirement that RMM should
protect itself from privilege escalation
and code injection by an attacker into R-EL2. The
RMM execution cannot be hijacked by an
attacker through the use of the RMM ABI.

Availability

Availability of Realm world is out of scope for this
Threat Model. However, RMM should be
designed in such a way that neither Realm nor RMM
should significantly affect the availability
of NS Host and Secure World.

60 Chapter 5. Security

Realm Management Monitor

Threat Agents

To understand the attack surface, it is important to identify potential attackers, i.e. attack entry points. The following
threat agents are in scope of this threat model.

Table 3: Table 3: Threat Agents
Threat Agent Description
RealmCode

Malicious or faulty code running in the Realm world,
including R-EL0 and R-EL1 levels.

HostSoftware

Malicious or faulty code running in the Secure or
Non-Secure world, EL0 and EL1 levels.

AppDebug

Physical adversary using debug build of RMM or
access to debug sources of the system.

There is also a number of Threat Agents which are not covered by this Threat Model. These are listed in the table
below.

Table 4: Table 4: Threat Agents not covered by this Threat Model
Threat Agent Description
RootCode

Malicious or faulty code running at Root Level (e.g.
EL3 Firmware). Since RootCode is part of TCB
of the system, any fault in Root code is usually a critical
vulnerability and not easily mitigated by
RMM. This Threat is considered out-of-scope of
analysis.

PhysicalAccess

Physical adversary having access to external device
communication bus and to external flash
communication bus using common hardware.

An advanced physical atacker that has the capability to
tamper with hardware (e.g. “rewiring” a chip
using a focused ion beam -FIB- workstation or
decapsulate the chip using chemicals).

5.1. Threat Model 61

Realm Management Monitor

Threat Types

In this threat model we categorize threats using the STRIDE threat analysis technique. In this technique a threat
is categorized as one or more of these types: Spoofing, Tampering, Repudiation, Information disclosure,
Denial of service or Elevation of privilege.

Threat Risk Ratings

For each threat identified, a risk rating that ranges from informational to critical is given based on the likelihood of
the threat occurring if a mitigation is not in place, and the impact of the threat (i.e. how severe the consequences could
be). Table 4 explains each rating in terms of score, impact and likelihood.

Table 5: Table 4: Rating and score as applied to impact and likelihood
Rating (Score) Impact Likelihood
Critical (5)

Extreme impact to entire
organization if exploited.

Threat is almost certain to be
exploited.

Knowledge of the threat and how to
exploit it are in the public domain.

High (4)

Major impact to entire organization
or single line of business if
exploited

Threat is relatively easy to detect
and exploit by an attacker with little
skill.

Medium (3)

Noticeable impact to line of
business if exploited.

A knowledgeable insider or expert
attacker could exploit the threat
without much difficulty.

Low (2)

Minor damage if exploited or could
be used in conjunction with other
vulnerabilities to perform a more
serious attack

Exploiting the threat would require
considerable expertise and
resources

Informational (1)

Poor programming practice or poor
design decision that may not
represent an
immediate risk on its own, but may
have security implications if
multiplied and/or
combined with other threats.

Threat is not likely to be exploited
on its own, but may be used to
gain information for launching
another attack

Aggregate risk scores are assigned to identified threats. Specifically, the impact score multiplied by the likelihood
score. For example, a threat with high likelihood and low impact would have an aggregate risk score of eight (8); that

62 Chapter 5. Security

https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model

Realm Management Monitor

is, four (4) for high likelihood multiplied by two (2) for low impact. The aggregate risk score determines the finding’s
overall risk level, as shown in the following table.

Table 6: Table 5: Overall risk levels and corresponding aggregate scores
Overall Risk Level Aggregate Risk Score (Impact multiplied by Likelihood)
Critical 20–25
High 12–19
Medium 6–11
Low 2–5
Informational 1

The likelihood and impact of a threat depends on the target environment in which RMM is running. For example,
attacks that require physical access are unlikely in server environments while they are more common in Internet of
Things (IoT) environments. In this threat model we only consider Server target environments.

5.1.4 Threat Assessment

The following threats were identified by applying STRIDE analysis on each diagram element of the data flow diagram.
The threats are related to software and implementation specific to TF-RMM.

For each threat, we strive to indicate whether the mitigations are currently implemented or not. However, the answer
to this question is not always straightforward. Some mitigations are partially implemented in the generic code but also
rely on the platform code to implement some bits of it. This threat model aims to be platform-independent and it is
important to keep in mind that such threats only get mitigated if the platform properly fulfills its responsibilities.

Also, some mitigations might require enabling specific features, which must be explicitly turned on via a build flag.

The Pending actions? box highlights any action that needs to be done in order to implement the mitigations.

5.1. Threat Model 63

Realm Management Monitor

ID 01
Threat

Information leak via UART logs.

During the development stages of software it is
common to print all sorts of information on the
console, including sensitive or confidential information
such as crash reports with detailed
information of the CPU state, current registers values,
privilege level or stack dumps.

This information is useful when debugging problems
before releasing the production
version but it could be used by an adversary to develop
a working exploit if left enabled in
the production version.

This happens when directly logging sensitive
information and more subtly when logging based
on sensitive data that can be used as a side-channel
information by an adversary.

Diagram Elements DF2
Assets Sensitive Data
Threat Agent AppDebug
Threat Type Information Disclosure
Impact Informational (1)
Likelihood Informational (1)
Total Risk Rating Informational (1)
Mitigations

1) For production releases:
i) Remove sensitive information logging.
ii) Do not conditionally log based on sensitive
data.
iii) Do not log high precision timing information.
iv) Do not log register contents which may reveal
secrets during crashes (Error

Syndrome registers are allowed to be
logged).

2) Provide option to fully disable RMM logging for
production releases.

Mitigations implemented?

1) Yes/Platform-specific.
The default log level does not output verbose log.
RMM does not implement crash reporting.
Messages produced by the platform code should
use the appropriate level of verbosity
so as not to leak sensitive information in
production builds.

2) Yes.
RMM provides the LOG_LEVEL build option
which can be used to disable all logging.

Pending actions?

1) Ensure the right verbosity level is used for the type
of information that it is logged.

64 Chapter 5. Security

Realm Management Monitor

ID 02
Threat

An adversary can try stealing information by using
RMM ABI.

NS Host accesses RMM through RMM ABI. Malicious
code can attempt to invoke services that would
result in disclosing private information or secrets.

Diagram Elements DF7
Assets Sensitive Data
Threat Agent HostSoftware
Threat Type Information Disclosure
Impact High (4)
Likelihood High (4)
Total Risk Rating High (16)
Mitigations

1) Ensure that RMM protects the Realm memory by
using GPT service provided by EL3 Firmware

and appropriate Stage 2 protections. NS Host
must not be able to change or access Realm
memory.

2) NS host must not be able to change or access Realm
CPU register contents other than what

is allowed by RMM ABI. Root code should
perform proper context switching of certain
subset of CPU registers as mandated in
RMM-EL3 Communication Interface when
entering and exiting the Realm world. Similarly,
RMM should context switch any
registers not managed by EL3 when
entering/exiting Realms.

3) The RME Architecture provides means to configure
memory isolation to the Realm

world. RMM relies on Root code for correct
RME setup. But when undelegating memory to
the Normal world, RMM needs to ensure that
suitable memory scrubbing is implemented.
Also, RMM should ensure any architectural
caches are invalidated before returning back
to NS Host.

Mitigations implemented?

1) Yes.
2) Yes.
3) Yes.

Pending actions?

None.

5.1. Threat Model 65

https://trustedfirmware-a.readthedocs.io/en/latest/components/rmm-el3-comms-spec.html

Realm Management Monitor

ID 03
Threat

An adversary can perform a denial-of-service attack on
the system by causing the Realm
world/RMM to deadlock, crash or enter into an
unknown state.

Diagram Elements DF5, DF7
Assets Availability
Threat Agent RealmCode, HostSoftware
Threat Type Denial of Service
Impact Medium (3)
Likelihood Low (2)
Total Risk Rating Medium (6)
Mitigations

1) Upon an unrecoverable/catastrophic condition,
RMM should issue a panic(). This would

return to EL3 Firmware, keeping the availability
of the overall system. It would
be EL3 responsibility to decide how to proceed
(e.g. by disabling the whole Realm
world).

2) EL3 Firmware needs to implement a watchdog
mechanism to recover CPUs from Realm World.

Mitigations implemented?

1) No.
2) Mitigation would need support from EL3 Firmware.

Pending actions?

panic() needs appropriate implementation to return to
EL3 Firmware.

66 Chapter 5. Security

Realm Management Monitor

ID 04
Threat

Malicious Host or Realm code can attempt to place the
RMM into an inconsistent state due to
incorrect implementation of RMM state machines.
This inconsistency can be exploited to lead
incorrect operation of RMM.

Diagram Elements DF5, DF7
Assets Availability, Sensitive Data, Code Execution
Threat Agent RealmCode, HostSoftware
Threat Type Denial of Service, Tampering, Elevation of privilege, In-

formation Disclosure
Impact Medium (3)
Likelihood Low (2)
Total Risk Rating Medium (6)
Mitigations

1) State machines should be tested for all the transitions
and validated that all invalid

transitions and inputs are rejected.
2) The RMM ABI mandates pre and post conditions for
each ABI. The tests should verify that

these conditions are adhered to and implemented.
3) Static analyzers and model checkers can be used to
uncover bugs in implementation.
4) Fuzz testing can be employed to uncover further
issues in implementation.
5) Upon an unrecoverable/catastrophic condition
occurs, RMM should issue a panic() to

prevent further corruption of data or propagation
of errors.

Mitigations implemented?

1) Partial.
There are various tests in TFTF, ACS and
kvm-unit-tests for exercising the ABI which
triggers the state machines. Unit tests are also
present for some components to exercise
internal APIs which can further test conditions
and invalid cases which cannot be
triggered via RMM ABI.

2) Partial.
Code reviews to ensure the implementation
complies the required conditions. Automated
checking via CBMC to validate the same is also
being implemented.

3) Yes.
CPPCheck and Coverity scan are used to detect
issues. CBMC is also utilized as a model
checker.

4) No.
5) Yes.

Pending actions?

Expand coverage of unittests in RMM. Evolve tests in
other test frameworks in an ongoing
manner. Integrate CBMC into RMM testing.
Implement Fuzz testing for RMM.

5.1. Threat Model 67

Realm Management Monitor

ID 05
Threat

Malicious Host or Realm code can attack RMM by
calling unimplemented SMC calls or by passing
invalid arguments to the ABI.

Diagram Elements DF5, DF7
Assets Sensitive Data, Code Execution
Threat Agent RealmCode, HostSoftware
Threat Type Denial of Service, Tampering, Elevation of privilege, In-

formation Disclosure
Impact High (4)
Likelihood High (4)
Total Risk Rating High (16)
Mitigations

1) Validate SMC function IDs and arguments before
using them.
2) Invalid/Unimplemented SMCs should return back to
caller with error code.
3) Tests to exercise invalid arguments and
unimplemented SMCs.

Mitigations implemented?

1) Yes.
2) Yes.
3) Partial.

The ACS test utility exercises many invalid
inputs. Unit tests also test various invalid
cases.

Pending actions?

Expand unit tests to cover the RMM ABI interface and
test for invalid inputs.

68 Chapter 5. Security

Realm Management Monitor

ID 06
Threat

An adversary can make use of incorrect
implementation of concurrent sections in RMM to
cause data corruption or dead/live locks.

Diagram Elements DF5, DF7
Assets Availability, Sensitive Data, Code Execution
Threat Agent RealmCode, HostSoftware
Threat Type Denial of Service, Tampering, Elevation of privilege, In-

formation Disclosure
Impact Medium (3)
Likelihood Low (2)
Total Risk Rating Medium (6)
Mitigations

1) Follow locking discipline described in RMM
Locking Guidelines when implementing

concurrent sections in RMM.
2) Validate locking discipline using tests which can run
multiple threads in RMM.
3) Fuzz tests on RMM with multiple threads.

Mitigations implemented?

1) Yes.
2) Yes.

The TFX test has tests which can test concurrent
sections in RMM. Also, stress
tests in CI will also test this scenario.

3) No.
Need further investigation.

Pending actions?

Enhance TFX tests to test more concurrent sections in
RMM. Investigate the possibility of
multithread Fuzz Testing.

5.1. Threat Model 69

https://tf-rmm.readthedocs.io/en/latest/design/locking.html
https://tf-rmm.readthedocs.io/en/latest/design/locking.html

Realm Management Monitor

ID 07
Threat

A Realm can claim to be another Realm. NS Host can
associate the PA of one Realm to another
Realm.

Diagram Elements DF5, DF7
Assets Sensitive Data
Threat Agent RealmCode, HostSoftware
Threat Type Spoofing
Impact High (4)
Likelihood Low (2)
Total Risk Rating Medium (8)
Mitigations

1) A Realm should not be able to spoof another realm.
The NSHost must not be able to assign

a granule/metadata to a Realm which is already
assigned to another Realm.

Mitigations Implemented?

1) Yes.
This mitigation is inherently supported by the
RMM ABI. SMC call from realm is always
associated to the Realm Descriptor (RD) and the
RMM ABI does not allow spoofing of RD.
NS Host always has to pass the address of a valid
RD to make requests to the
corresponding Realm. RMM maintains a global
granule array and every granule linked to a
Realm has a specific State and reference count
associated with it. Hence, the NS Host
cannot associate an already Realm associated
granule to another Realm.

Pending actions?

None.

70 Chapter 5. Security

Realm Management Monitor

ID 08
Threat

An adversary could execute arbitrary code, modify
some state variables, change the normal
flow of the program or leak sensitive information if
memory overflows and boundary
checks when accessing resources are not properly
handled. In the particular case in which the
control flow can be changed by a stack overflow, code
execution can also be subverted by an
adversary.

Like in other software, RMM has multiple points where
memory corruption and security errors can
arise.

Some of the errors include integer overflow, buffer
overflow, incorrect array boundary checks
and incorrect error management. Improper use of
asserts instead of proper input
validations might also result in these kinds of errors in
release builds.

Diagram Elements DF5, DF7
Assets Code Execution, Sensitive Data, Availability
Threat Agent RealmCode, HostSoftware
Threat Type Tampering, Information Disclosure, Elevation of Privi-

lege
Impact Medium (3)
Likelihood Low (2)
Total Risk Rating Medium (6)
Mitigations

1) Use proper input validation.
2) Enable Architecture security features to mitigate
buffer overflow and ROP/JOP issues.
3) Utilize stack protection mechanism provided by the
compiler.
4) Design suitable per CPU stack protection, so another
CPU cannot corrupt stack which does

not belong to it.
5) Suitable testing to test bounds of inputs.
6) Employ secure coding guidelines like MISRA to
remove many of the type safety issues

associated with the C language.
7) Use static analyzers to check for common issues.
Also, make use of model checkers to

validate loop bounds and other bounds in the
source code.

Mitigations implemented?

1) Yes.
2) Yes.

RMM Enables many Architecture security
features like PAuth and BTI but there is
ongoing action to enable more architectural
security features.

3) No.
4) No.
5) Partial.

Some tests are present, but more tests needed to
ensure the bounds are validated.

6) Yes.
7) Partial. RMM uses CPPCheck and Coverity Scan to
detect

issues. RMM also utilizes CMBC to ensure that
bounds in loops and other program constructs
are proper.

Pending actions?

Add sanitizers like ASAN, MSAN or UBSAN.
Implement further Architecture extensions
related to security. RMM needs to implement per-CPU
stack protection and also provide
capability to add compiler stack protection features as a
user option.

5.1. Threat Model 71

Realm Management Monitor

ID 09
Threat

SMC calls can leak sensitive information from RMM
memory via microarchitectural side channels.

Microarchitectural side-channel attacks such as Spectre
can be used to leak data across
security boundaries. An adversary might attempt to use
this kind of attack to leak sensitive
data from RMM memory.

Also, some SMC calls, such as the ones involving
encryption when applicable, might take different
amount of time to complete depending upon the
parameters. An adversary might attempt to use
that information in order to infer secrets or to leak
sensitive information.

Diagram Elements DF5, DF7
Assets Sensitive Data
Threat Agent RealmCode, HostSoftware
Threat Type Information Disclosure
Impact Medium (3)
Likelihood Informational (1)
Total Risk Rating Low (3)
Mitigations

1) Enable appropriate speculation side-channel
mitigations as recommended by the

Architecture.
2) Enable appropriate timing side-channel protections
available in the Architecture.
3) Ensure the software components dealing with
sensitive data use Data Independent

algorithms.
4) Ensure that only required memory is mapped when
executing a Realm or doing operations in

RMM so as to minimize effects of CPU
speculation.

Mitigations implemented?

1) Yes.
2) Yes.

FEAT_DIT is enabled for RMM.
3) Yes.

RMM relies on MbedTLS library to use
algorithms which are data independent when
handling sensitive data.

4) Yes.
The slot buffer design for dynamically mapping
memory ensures that only required
memory is mapped into RMM.

Pending actions?

Review speculation vulnerabilities and ensure RMM
implements all mititagions provided by the
Architecture.

72 Chapter 5. Security

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability

Realm Management Monitor

ID 10
Threat

Misconfiguration of the S2 MMU tables may allow
Realms to access sensitive data belonging to
other Realms or incorrect mapping of NS memory may
allow Realms to corrupt NSHost memory.

Diagram Elements DF5, DF7
Assets Sensitive Data, Code execution
Threat Agent RealmCode, HostSoftware
Threat Type Information Disclosure
Impact High (4)
Likelihood Low (2)
Total Risk Rating Medium (8)
Mitigations

1) Ensure proper implementation of S2 table
management code in RMM. It should not be

possible to trigger misconfiguration of S2 tables
using RMM ABI. Appropriate tests to
ensure that the implementation is robust.

2) The RMM specification mandates the rules for
assigning memory to a Realm and IPA

management. Ensure the rules mandated by the
RMM specification are validated by suitable
tooling.

Mitigations implemented?

1) Partially.
There are various tests like kvm-unit-tests, TFTF,
TFX and ACS to test the
implementation. Unit tests of S2 tables need to
be implemented. Static analysis is in
place to detect issues.

2) Partially.
Code reviews to ensure the implementation
complies with the required conditions.
Automated checking via CBMC to validate the
same is also being implemented.

Pending actions?

Increase testing coverage of S2 table management code
in RMM.
Integrate CMBC into RMM testing.

5.1. Threat Model 73

Realm Management Monitor

ID 11
Threat

Realm code flow diversion through REC metadata
manipulation from Host Software.

An adversary with access to a Realm’s REC could
tamper with the structure content and affect the
Realm’s execution flow.

Diagram Elements DF7
Assets Code Execution
Threat Agent HostSoftware
Threat Type Tampering
Impact High (4)
Likelihood Low (2)
Total Risk Rating Medium (8)
Mitigations

1) The RMM specification mandates that sensitive
metadata like REC should be stored in Realm

PAS. Also, the specification does not allow
NSHost to manipulate REC contents via RMI
once the associated Realm is Activated. Ensure
that the RMM specification guidelines
are enforced.

2) Map sensitive metadata into RMM S1 tables only
when manipulating the Realm/REC. Once

RMM is finished manipulating the metadata,
unmap it from S1 tables. Thus the time window
when RMM can access the metadata is kept to a
minimum thus reducing the opportunity to
corrupt the metadata.

Mitigations implemented?

1) Yes.
2) Yes.

The slot-buffer mechanism in RMM is used to
map metadata only when needed and it is
unmmaped when the access is not required.

Pending actions? None

74 Chapter 5. Security

Realm Management Monitor

ID 12
Threat

Use of PMU and MPAM statistics to increase the the
accuracy of side channel attacks.

Diagram Elements DF5, DF7
Assets Sensitive Data
Threat Agent RealmCode, HostSoftware
Threat Type Information Disclosure
Impact Medium (3)
Likelihood Informational (1)
Total Risk Rating Low (3)
Mitigations

1) Save/Restore performance counters on on transitions
between security domains or

between Realms.
2) Configure MPAM so that is either disabled or set to
default values for Realm world.

Mitigations implemented?

1) PMU is saved and restored.
2) MPAM is not enabled for Realm world.

Pending actions? None.

5.1. Threat Model 75

Realm Management Monitor

ID 13
Threat

Misconfiguration of the hardware IPs and registers may
lead to data leaks or incorrect
behaviour that could be damaging on its own as well as
being exploited by a threatening agent.

RMM needs to interact with several hardware IPs as
well as system registers for which it uses
its own libraries and/or drivers. Misconfiguration of
such elements could cause
data leaks and/or system malfunction.

Diagram Elements DF5, DF7
Assets Sensitive Data, Availability
Threat Agent RealmCode, HostSoftware
Threat Type Information Disclosure, Denial of Service
Impact High (4)
Likelihood Low (2)
Total Risk Rating Medium (8)
Mitigations

1) Code reviews.
2) Testing on FVPs and other hardware and emulation
platforms to check for correct

behaviour.

Mitigations implemented?

1) Yes.
2) Yes.

RMM is tested regularly on FVP and more
platforms will be added in future as they
become available.

Pending actions? None

76 Chapter 5. Security

CHAPTER

SIX

RESOURCES

6.1 Application Notes

6.1.1 CBMC

CBMC is a Bounded Model Checker for C and C++ programs. For details see CBMC Home

CBMC in RMM

CBMC needs to be run on a C program that has a single entry point. To test all the RMM ABI commands, for each
command a testbench file is created. These files are generated by a script offline from the RMM MRS (Machine
Readable Specification), and committed to the RMM repository under the folder tools/cbmc/testbenches

Note: Currently only a subset of the ABI calls have a testbench implemented. Also there are errors reported by CBMC
for some of the testbenches. Further testbenches and fixes are expected to be added later.

These files contain asserts that correspond to the Faliure and Success conditions defined in the RMM specification. To
read on further how such a file should be defined please refer to Writing a good proof

The recommended way for installing CBMC is via the pre-built package found at the github release page. The same
page contains the instructions for installing the different release packages.

An example install command for Ubuntu linux is

dpkg -i ubuntu-20.04-cbmc-5.95.1-Linux.deb

The invocation of CBMC tool is integrated in the RMM CMake system. CBMC analysis can be run by passing specific
targets (detailed later) to the build command. to make the targets available the RMM build must be configured with
-DRMM_CONFIG=host_defcfg -DHOST_VARIANT=host_cbmc options.

The results of a CBMC run are generated in the ${RMM_BUILD_DIR}/tools/cbmc/cbmc_${MODE}_results direc-
tory. There are 3 files, ${TESTBENCH_FILE_NAME}.${MODE}.[cmd|error|output] generated for each RMM ABI
under test, each one containing the CBMC command line, the CBMC executable’s output to the standard error, and the
output to the standard out respectively. There is also a single SUMMARY.${MODE} file is generated for each build.

For an example build command please refer to RMM Build Examples

The CMake system by default runs CBMC on all the testbenches. This can take a long time,
and it can be convenient to run a single testcase at once. This can be achieved using the option
-DRMM_CBMC_SINGLE_TESTBENCH="testbench_name". The list of possible testbench_name``s can be
listed by using the option ``-DRMM_CBMC_SINGLE_TESTBENCH="help".

77

https://www.cprover.org/cbmc/
https://model-checking.github.io/cbmc-training/management/Write-a-good-proof.html
https://github.com/diffblue/cbmc/releases

Realm Management Monitor

The CMake system provides different modes in which CBMC can be called, along with their respective build targets.

CBMC Assert

In this mode CBMC is configured, so that it tries to find inputs that makes an assertion in the code to fail. If there is
such an input, then CBMC provides a trace that leads to that assertion failure.

To use this mode the target cbmc-assert must be passed to the build command.

CBMC Analysis

In this mode CBMC is configured to generate assertions for certain properties in the code. The properties are selected
so that for example no buffer overflows, or arithmetic overflow errors can happen in the code. For more details please
refer to Automatically Generating Properties. Then CBMC is run in a configuration similar to the Assert mode, except
that this time traces are not generated.

To use this mode the target cbmc-analysis must be passed to the build command.

CBMC Coverage

This mode checks whether all the conditions for an ABI function are covered. The pre and post conditions for the
command are expressed as boolean values in the testbench, and a __CPROVER_cover() macro is added for each con-
dition that is expressed with the pre and post conditions. CBMC is configured to try to generate an input for each
__CPROVER_cover() call that makes the code reach that call.

To use this mode the target cbmc-coverage must be passed to the build command.

Note: For all the modes the summary files are committed in the source tree as baseline in tools/cbmc/
testbenches_results/BASELINE.${MODE}.

Build The CBMC testbench with GCC

In the RMM CMake system there is an option to build the CBMC testbench with GCC compiler. The resulting binary
doesn’t have any particular value, however during the compilation GCC may flag errors that can cause CBMC work
unexpectedly. For example functions that are defined in a file that is linked during the CBMC build, however not
declared, due to a missing include. In this case CBMC seems to be silently ignoring the function body. This error is
quite difficult to find using only CBMC output.

To use this mode the target cbmc-gcc must be passed to the build command.

cbmc-viewer

cbmc-viewer is a python package that can parse the XML output of CBMC. It generates a html report that can be opened
in a browser. The report contains a collapsible representation of assert traces, and clickable links to the source code
locations associated with a specific trace item.

The RMM cmake build system is capable of generating the cbmc-viewer report. If the option
-DRMM_CBMC_VIEWER_OUTPUT=ON is passed to the RMM Cmake configuration command then the Cmake system calls
cbmc-viewer and generates the report under ${RMM_BUILD_DIR}/tools/cbmc/cbmc_${MODE}_results/report

78 Chapter 6. Resources

https://www.cprover.org/cprover-manual/properties/

Realm Management Monitor

Please note that the CMake build system currently only generates report for the cbmc-assert target. The
cbmc-coverage and cbmc-analysis targets doesn’t generate trace, so generating a report wouldn’t be useful.

cbmc-viewer can be installed using the following command:

python3 -m pip install cbmc-viewer

For further details and installation guide on cbmc-viewer please see the cbmc-viewer github page.

CBMC proof debugger

CBMC proof debugger is an extension to a popular code editor that can be used to load the json summaries of a CBMC
analysis that is generated by cbmc-viewer. The trace then can be explored in the built in debugger of the editor as if
stepping through an actual code execution.

For further details on installing and using the extension please see CBMC proof debugger in the editor’s extensions
page.

6.1. Application Notes 79

https://github.com/model-checking/cbmc-viewer
https://marketplace.visualstudio.com/items?itemName=model-checking.cbmc-proof-debugger
https://marketplace.visualstudio.com/items?itemName=model-checking.cbmc-proof-debugger

Realm Management Monitor

80 Chapter 6. Resources

CHAPTER

SEVEN

GLOSSARY

This glossary provides definitions for terms and abbreviations used in the RMM documentation.

You can find additional definitions in the Arm Glossary.

AArch64
64-bit execution state of the ARMv8 ISA

GPF
Granule Protection Fault

IPA
Intermediate Physical Address

PA
Physical Address

PAR
Protected Address Range

PAS
Physical Address Space

RD
Realm Descriptor

REC
Realm Execution Context

RMM
Realm Management Monitor

RTT
Realm Translation Table

TF-A
Trusted Firmware-A

TTE
Translation Table Entry

VHE
Virtualization Host Extensions

81

https://developer.arm.com/support/arm-glossary

Realm Management Monitor

82 Chapter 7. Glossary

BIBLIOGRAPHY

[EWD310] Dijkstra, E.W. Hierarchical ordering of sequential processes. EWD 310.

[EWD625] Dijkstra, E.W. Two starvation free solutions to a general exclusion problem. EWD 625.

[MCS] Mellor-Crummey, John M. and Scott, Michael L. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM TOCS, Volume 9, Issue 1, Feb. 1991.

[WS2001] Stallings, W. (2001). Operating systems: Internals and design principles. Upper Saddle River, N.J: Prentice
Hall.

83

Realm Management Monitor

84 Bibliography

INDEX

A
AArch64, 81

G
GPF, 81

I
IPA, 81

P
PA, 81
PAR, 81
PAS, 81

R
RD, 81
REC, 81
RMM, 81
RTT, 81

T
TF-A, 81
TTE, 81

V
VHE, 81

85

	About
	Readme for TF-RMM
	License
	Third Party Projects

	Contributing
	Feedback and support

	Project Maintenance
	Maintainers

	Change-log and Release notes
	v0.4.0
	New features in this release
	Build/Testing/Tooling improvements
	Platforms
	Bug fixes/improvements in this release
	Known issues and limitations
	Upcoming features

	v0.3.0
	New features in this release
	Build/Testing improvements
	Bug fixes in this release
	Upcoming features
	Known issues and limitations

	v0.2.0
	v0.1.0
	Upcoming features
	Known issues and limitations

	Developer Certificate of Origin
	License

	Getting Started Guides
	Prerequisite
	Build Host
	Tool & Dependency overview
	Setup Toolchain
	Package Installation (Ubuntu-20.04 x64)
	Install python dependencies
	Install coverage tools analysis dependencies
	Getting the RMM Source
	Additional steps for Contributors

	Install Cppcheck and dependencies
	Install CBMC
	Performing an Initial Build
	Running the RMM
	RMM Build Examples
	RMM Build Options
	RMM LLVM Build
	RMM Fake Host Build

	Process
	Coding Standard
	General
	File Encoding
	Language
	C Language Standard
	Length
	Headers/Footers
	Naming conventions
	Indentation
	Spacing
	Braces
	Commenting
	Error return values and Exception handling
	Use of asserts and panic
	Using COMPILER_ASSERT to check for compile time data errors
	Data types, structures and typedefs
	Macros and Enums
	Switch statements
	Inline assembly
	Libc functions that are banned or to be used with caution

	Security Handling
	Commit Style
	Mandated Trailers

	Contributor’s Guide
	Getting Started
	Making Changes
	Submitting Changes
	License and Copyright for Contributions

	Design
	RMM Locking Guidelines
	Introduction
	Requirements
	Critical Section
	Mutual Exclusion
	Deadlock Avoidance
	Starvation Avoidance
	Nested Critical Sections

	Implementation
	Locking
	Reference Counting

	Guidelines
	Mutual Exclusion
	Deadlock Avoidance
	Starvation Avoidance
	Nested Critical Sections

	References

	MMU setup and memory management design in RMM
	Physical Address Space
	Granule state tracking
	RMM stage 1 translation regime
	Stage 1 Low VA range
	Stage 1 High VA range
	Stage 1 High VA - Slot Buffer mechanism
	Per-CPU stack mapping

	Stage 1 translation library (xlat library)
	RMM executable bootstrap

	RMM Folder and Component organization
	Root Level Folders and Components
	Component File and Cmake Structure

	RMM Fake host architecture
	Fake host architecture design
	Fake host architecture employment scenarios implemented or ongoing

	RMM Cold and Warm boot design
	RMM-EL3 communication specification

	Security
	Threat Model
	Introduction
	Data Flow Diagram
	Target of Evaluation
	Data Flow Diagram

	Threat Analysis components
	Assets
	Threat Agents
	Threat Types
	Threat Risk Ratings

	Threat Assessment

	Resources
	Application Notes
	CBMC
	CBMC in RMM
	CBMC Assert
	CBMC Analysis
	CBMC Coverage
	Build The CBMC testbench with GCC

	cbmc-viewer
	CBMC proof debugger

	Glossary
	Bibliography
	Index

